1 resultado para ventilazione, VMC, IAQ,

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary approaches for people to understand the inner properties of the earth and the distribution of the mineral resources are mainly coming from surface geology survey and geophysical/geochemical data inversion and interpretation. The purpose of seismic inversion is to extract information of the subsurface stratum geometrical structures and the distribution of material properties from seismic wave which is used for resource prospecting, exploitation and the study for inner structure of the earth and its dynamic process. Although the study of seismic parameter inversion has achieved a lot since 1950s, some problems are still persisting when applying in real data due to their nonlinearity and ill-posedness. Most inversion methods we use to invert geophysical parameters are based on iterative inversion which depends largely on the initial model and constraint conditions. It would be difficult to obtain a believable result when taking into consideration different factors such as environmental and equipment noise that exist in seismic wave excitation, propagation and acquisition. The seismic inversion based on real data is a typical nonlinear problem, which means most of their objective functions are multi-minimum. It makes them formidable to be solved using commonly used methods such as general-linearization and quasi-linearization inversion because of local convergence. Global nonlinear search methods which do not rely heavily on the initial model seem more promising, but the amount of computation required for real data process is unacceptable. In order to solve those problems mentioned above, this paper addresses a kind of global nonlinear inversion method which brings Quantum Monte Carlo (QMC) method into geophysical inverse problems. QMC has been used as an effective numerical method to study quantum many-body system which is often governed by Schrödinger equation. This method can be categorized into zero temperature method and finite temperature method. This paper is subdivided into four parts. In the first one, we briefly review the theory of QMC method and find out the connections with geophysical nonlinear inversion, and then give the flow chart of the algorithm. In the second part, we apply four QMC inverse methods in 1D wave equation impedance inversion and generally compare their results with convergence rate and accuracy. The feasibility, stability, and anti-noise capacity of the algorithms are also discussed within this chapter. Numerical results demonstrate that it is possible to solve geophysical nonlinear inversion and other nonlinear optimization problems by means of QMC method. They are also showing that Green’s function Monte Carlo (GFMC) and diffusion Monte Carlo (DMC) are more applicable than Path Integral Monte Carlo (PIMC) and Variational Monte Carlo (VMC) in real data. The third part provides the parallel version of serial QMC algorithms which are applied in a 2D acoustic velocity inversion and real seismic data processing and further discusses these algorithms’ globality and anti-noise capacity. The inverted results show the robustness of these algorithms which make them feasible to be used in 2D inversion and real data processing. The parallel inversion algorithms in this chapter are also applicable in other optimization. Finally, some useful conclusions are obtained in the last section. The analysis and comparison of the results indicate that it is successful to bring QMC into geophysical inversion. QMC is a kind of nonlinear inversion method which guarantees stability, efficiency and anti-noise. The most appealing property is that it does not rely heavily on the initial model and can be suited to nonlinear and multi-minimum geophysical inverse problems. This method can also be used in other filed regarding nonlinear optimization.