7 resultados para van Hove function
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Four well-resolved peaks with very narrow linewidths were found in the D-band and G'-band features of double-walled carbon nanotubes (DWNTs). This fact implies the occurrence of additional van Hove singularities (vHSs) in the joint density of states (JDOS) of DWNTs, which is consistent with theoretical calculations. According to their peak frequencies and theoretical analysis, the two outer peaks can be deduced to originate from a strong coupling between the two constituent tubes of commensurate DWNTs and the two inner peaks were curvature-related and assigned to originate from the two tubes with a weak coupling. This observation and elucidation constitute the first Raman evidence for atomic correlation and the resulting electronic structure change of the two constituent tubes in DWNTs. This result opens the possibility of predicting and modifying the electronic properties of DWNTs for their electronic applications.
Resumo:
采用Dirac Brueckner-Hartree-Fock理论方法,计算了零温核物质中每核子的结合能、压强和单核子能量,着重讨论了不同的T矩阵协变表示对核物质中Hugenholtz-Van Hove(HVH)定理满足程度的影响.结果表明:不同的协变表示对核子自能各分量的动量相关性和密度依赖性均有重要影响,进而对核介质中HVH定理的满足程度产生重要影响.在完全的膺矢量表示下,HVH定理遭到了相当大程度的破坏,从而体现出基态关联效应对单核子性质的重要性,并与非相对论BHF理论方法得到的结论一致,因而完全的膺矢量表示要优于膺标量表示.
Resumo:
在扩展的同位旋相关的Brueckner—Hartree—Fock理论框架内,在整个同位旋自由度范围内研究了质量算子的空穴线展开中不同等级近似下非对称核物质中Hugenholtz—Van Hove定理的满足程度,并计算了中子和质子的费米能量.结果表明为了使Hugenholtz-Van Hove定理达到令人满意的满足程度,需要同时考虑质量算子中的重排贡献和重正修正,从而指出了基态关联对于非对称核物质中单粒子性质的重要性.
Resumo:
Within the framework of Dirac Brueckner-Hartree-Fock (DBHF) approach, we calculate the energy per nucleon, the pressure, the nucleon self-energy, and the single-nucleon energy in the nuclear matter by adopting two different covariant representations for T-matrix. We mainly investigate the influence of different covariant representations on the satisfiable extent of the Hugenholtz-Van Hove (HVH) theorem in the nuclear medium in the framework of DBHF. By adopting the two different covariant representations of T-matrix, the predicted nucleon self-energy shows a quite different momentum and density dependence. Different covariant representations affect remarkably the satisfiable extent of the HVH theorem. By adopting the complete pseudo-vector representation of the T-matrix, HVH theorem is largely violated, which is in agreement with the result in the non-relativistic Brueckner-Hartree-Fock approach and reflects the importance of ground state correlations for single nucleon properties in nuclear medium, whereas by using the pseudoscalar representation, the ground state correlation cannot be shown. It indicates that the complete pseudo-vector presentation is more feasible than the pseudo-scalar one.
Resumo:
The morphological stability of epitaxial thin elastic films on a substrate by van der Waals force is discussed. It is found that only van der Waals force with negative Hamaker constant (A < 0) tends to stabilize the film, and the lower bound for the Hamaker constant is also obtained for the stability of thin film. The critical value of the undulation wavelength is found to be a function of both film thickness and external stress. The charateristic time-scale for surface mass diffusion scales to the fourth power to the wavelength of the perturbation.
Resumo:
We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at root S-NN = 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage vertical bar-1.3, 1.3 vertical bar. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes. (c) 2010 Elsevier B.V. All rights reserved.