190 resultados para ultra-deep desulfurization

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The deep centers of high electron mobility transistor (HEMT) and pseudomorphic-HEMT (P-HEMT) functional materials of ultra-high-speed microstructures grown by MBE are investigated using deep level transient spectroscopy (DLTS) technique. DLTS spectra demonstrate that midgap states, having larger concentrations and capture cross sections, are measured in n-AlGaAs layers of HEMT and P-HEMT structures. These states may correlate strongly with oxygen content of n-AlGaAs layer. At the same time, one can observe that the movement of DX center is related to silicon impurity that is induced by the strain in AlGaAs layer of the mismatched AlGaAs/InGaAs/GaAs system of P-HEMT structure. The experimental results also show that DLTS technique may be a tool of optimization design of the practical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental trials of autogenous deep penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 5.0 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser output power, welding velocity and defocusing distance on the morphology, welding depth and width as well as quality of the welded seam were investigated. Results show that full keyhole welding is not formed on both K4.18 and 42CrMo side, simultaneously, due to the relatively low output power. Partial fusion is observed on the welded seam near 42CrMo side because of the large disparity of thermal-physical and high-temperature mechanical properties of these two materials. Tile rnicrohardness of the laser-welded joint was also examined and analyzed. It is suggested that applying negative defocusing in the range of Raylei length can increase the welding depth and improve tile coupling efficiency of the laser materials interaction. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The materials considered in our analysis were ZrB2 ceramic matrix composites. Effect of two different additives (graphite and AlN) on thermal shock stability for the materials was measured by water quench test. It showed that it may provide more stable thermal shock properties with additives of graphite. It was explained by different thermal properties and crack resistance of the two materials in detail. Surface oxidation was one of main reasons for strength degradation of ceramic with additives of graphite after quenched in water, and surface crack was one of main reasons for strength degradation of ceramic with additives of AlN after quenched in water. It was presented that it was a potential method for improving thermal shock stability of ZrB2 ceramic matrix composites by introducing proper quantities of graphite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to the experimental results and the characteristics of the pressure-sensitive fractured formation, a transient flow model is developed for the deep naturally-fractured reservoirs with different outer boundary conditions. The finite element equations for the model are derived. After generating the unstructured grids in the solution regions, the finite element method is used to calculate the pressure type curves for the pressure-sensitive fractured reservoir with different outer boundaries, such as the infinite boundary, circle boundary and combined linear boundaries, and the characteristics of the type curves are comparatively analyzed. The effects on the pressure curves caused by pressure sensitivity module and the effective radius combined parameter are determined, and the method for calculating the pressure-sensitive reservoir parameters is introduced. By analyzing the real field case in the high temperature and pressure reservoir, the perfect results show that the transient flow model for the pressure-sensitive fractured reservoir in this paper is correct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The configuration of semisubmersibles consisting of pontoons and columns and their corresponding heave motion response in incident progressive waves are examined. The purpose of the present study is to provide a theoretical approach to estimating the effects of volumetric allocation on natural period and response amplitude operator (RAO) in heave motion. We conclude that the amplitude of heave motion response can be considerably suppressed by appropriately adjusting volumetric allocation so that the natural heave period keeps away from the range of wave energy. The theoretical formulae are found in good agreement with the corresponding computational results by WAMIT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the finite element method and the limit equilibrium method, a numerical model has been estab-lished for examining the effects of rainfall infiltration on the stability of slopes. This model is able to reflect the variations in pore water pressure field in slopes, dead weight of the soil, and soil softening caused by rainfall infiltration. As a case study, an actual landslide located at the Nongji Jixiao in Chongqing was studied to analyze the effects of rainfall infiltration on the seepage field and slope sta-bility. The simulated results showed that a deep slope failure is prone to occur when rainfall infiltration leads to a remarkable variation in the seepage field, especially when the pore water pressure in slopes increases in a large range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of a linearly polarized intense laser pulse with an ultrathin nanometer plasma layer is investigated to understand the physics of the ion acceleration. It is shown by the computer simulation that the plasma response to the laser pulse comprises two steps. First, due to the vxB effect, electrons in the plasma layer are extracted and periodic ultrashort relativistic electron bunches are generated every half of a laser period. Second, strongly asymmetric Coulomb explosion of ions in the foil occurs due to the strong electrostatic charge separation, once the foil is burnt through. Followed by the laser accelerated electron bunch, the ion expansion in the forward direction occurs along the laser beam that is much stronger as compared to the backward direction. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ultra-broadband Ti:sapphire regenerative amplifier based on spatially dispersed amplification is demonstrated experimentally. Departing from previous reports, a new design of the cavity gets the amplified pulse free from spatial chirp. Utilizing this new regenerative amplifier, chirped pulses with bandwidth (FWHM) of about 80 nm are obtained, and the bandwidth is limited only by that of the incident seed pulses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically demonstrate that enhanced penetration depth in three-dimensional multiphoton microscopy can be achieved using concentric two-color two-photon (C2C2P) fluorescence excitation in which the two excitation beams are separated in space before reaching their common focal spot. Monte Carlo simulation shows that, in comparison with the one-color two-photon excitation scheme, the C2C2P fluorescence microscopy provides a significantly greater penetration depth for imaging into a highly scattering medium. (C) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep-subwavelength gratings with periodicities of 170, 120, and 70 nm can be observed on highly oriented pyrolytic graphite irradiated by a femtosecond (fs) laser at 800 nm. Under picosecond laser irradiation, such gratings likewise can be produced. Interestingly, the 170-nm grating is also observed on single-crystal diamond irradiated by the 800-nm fs laser. In our opinion, the optical properties of the high-excited state of material surface play a key role for the formation of the deep-subwavelength gratings. The numerical simulations of the graphite deep-subwavelength grating at normal and high-excited states confirm that in the groove the light intensity can be extraordinarily enhanced via cavity-mode excitation in the condition of transverse-magnetic wave irradiation with near-ablation-threshold fluences. This field enhancement of polarization sensitiveness in deep-subwavelength apertures acts as an important feedback mechanism for the growth and polarization dependence of the deep-subwavelength gratings. In addition, we suggest that surface plasmons are responsible for the formation of seed deep-subwavelength apertures with a particular periodicity and the initial polarization dependence. Finally, we propose that the nanoscale Coulomb explosion occurring in the groove is responsible for the ultrafast nonthermal ablation mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies the correlation properties of the speckles in the deep Fresnel diffraction region produced by the scattering of rough self-affine fractal surfaces. The autocorrelation function of the speckle intensities is formulated by the combination of the light scattering theory of Kirchhoff approximation and the principles of speckle statistics. We propose a method for extracting the three surface parameters, i.e. the roughness w, the lateral correlation length xi and the roughness exponent alpha, from the autocorrelation functions of speckles. This method is verified by simulating the speckle intensities and calculating the speckle autocorrelation function. We also find the phenomenon that for rough surfaces with alpha = 1, the structure of the speckles resembles that of the surface heights, which results from the effect of the peak and the valley parts of the surface, acting as micro-lenses converging and diverging the light waves.