119 resultados para ultra wide band

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optimal bounded control of quasi-integrable Hamiltonian systems with wide-band random excitation for minimizing their first-passage failure is investigated. First, a stochastic averaging method for multi-degrees-of-freedom (MDOF) strongly nonlinear quasi-integrable Hamiltonian systems with wide-band stationary random excitations using generalized harmonic functions is proposed. Then, the dynamical programming equations and their associated boundary and final time conditions for the control problems of maximizinig reliability and maximizing mean first-passage time are formulated based on the averaged It$\ddot{\rm o}$ equations by applying the dynamical programming principle. The optimal control law is derived from the dynamical programming equations and control constraints. The relationship between the dynamical programming equations and the backward Kolmogorov equation for the conditional reliability function and the Pontryagin equation for the conditional mean first-passage time of optimally controlled system is discussed. Finally, the conditional reliability function, the conditional probability density and mean of first-passage time of an optimally controlled system are obtained by solving the backward Kolmogorov equation and Pontryagin equation. The application of the proposed procedure and effectiveness of control strategy are illustrated with an example.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite materials with interpenetrating network structures usually exhibit unexpected merit due to the cooperative interaction. Locally resonant phononic crystals (LRPC) exhibit excellent sound attenuation performance based on a periodical arrangement of sound wave scatters. Inspired by the interpenetrating network structure and the LRPC concept, we develop a locally network anechoic coating (LNAC) that can achieve a wide band of underwater strong acoustic absorption. The experimental results show that the LNAC possesses an excellent underwater acoustic absorbing capacity in a wide frequency range. Moreover, in order to investigate the impact of the interpenetrating network structure, we fabricate a faultage structure sample and the network is disconnected by hard polyurethane (PU). The experimental comparison between the LNAC and the faultage structure sample shows that the interpenetrating network structure of the LNAC plays an important role in achieving a wide band strong acoustic absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To meet the demand of modern acoustic absorbing material for which acoustic absorbing frequency region can be readily tailored, we introduced woodpile structure into locally resonant phononic crystal (LRPC) and fabricated an underwater acoustic absorbing material, which is called locally resonant phononic woodpile (LRPW). Experimental results show that LRPW has a strong capability of absorbing sound in a wide frequency range. Further theoretical research revealed that LRPC units and woodpile structure in LRPW play an important role in realization of wide band underwater strong acoustic absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A polarization-insensitive semiconductor optical amplifier (SOA) with a very thin active tensile-strained InGaAs bulk has been fabricated. The polarization sensitivity of the amplifier gain is less than 1 dB over both the entire range of driving current and the 3 dB optical bandwidth of more than 80 nm. For optical signals of 1550 nm wavelength, the SOA exhibits a high saturation output power +7.6 dBm together with a low noise figure of 7.5 dB, fibre-to-fibre gain of 11.5 dB, and low polarization sensitivity of 0.5 dB. Additionally, at the gain peak 1520 nm, the fibre-to-fibre gain is measured to be 14.1 dB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use the transfer-matrix method to research the band structures in one-dimensional photonic crystals composed of anomalous dispersion material ( saturated atomic cesium vapor). Our calculations show that that type of photonic crystal possesses an ultra-narrow photonic band gap and this band gap is tunable when altering the electron population in the atomic ground state of the anomalous dispersion material by the optical pumping method. Copyright (C) EPLA, 2007.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a novel superluminescent diode (SLD) with a quantum dot (QD) active layer, which should give a wider output spectrum than a conventional quantum well SLD. The device makes use of inhomogeneous broadness of gain spectrum resulting from size inhomogeneity of self-assembled quantum dots grown by Stranski-Krastanow mode. Taking a design made out in the InxGa1-xAs/GaAs system for example, the spectrum characteristics of the device are simulated realistically, 100-200 nm full width of half maximum of output spectrum can be obtained. The dependence of the output spectrum on In composition, size distribution and injection current of the dots active region is also elaborated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a wide-band low noise amplifier, two mixers and a VCO with its buffers implemented in 50GHz 0.35 mu m SiGe BiCMOS technology for dual-conversion digital TV tuner front-end is presented. The LNA and up-converting mixer utilizes current injection technology to achieve high linearity. Without using inductors, the LNA achieves 0.1-1GHz wide bandwidth and 18.8-dB gain with less than 1.4-dB gain variation. The noise figure of the LNA is less than 5dB and its 1dB compression point is -2 dBm. The IIP3 of two mixers is 25-dBm. The measurement results show that the VCO has -127.27-dBc/Hz phase noise at 1-MHz offset and a linear gain of 32.4-MHz/V between 990-MHz and 1.14-GHz. The whole chip consume 253mW power with 5-V supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design of a wide-band low-noise amplifier (LNA) implemented in a 0.35 mu m SiGe BiCMOS technology for cable (DVB-C) and terrestrial (DVB-T) tuner applications. The LNA utilizes current injection to achieve high linearity. Without using inductors, the LNA achieves 0.1-1GHz wide bandwidth and 18.8-dB gain with less than 1.4-dB gain variation. The noise figure(NF) of the wideband LNA is 5dB, its 1-dB compression point is -2dBm and IIP3 is 8dBm. The LNA dissipates 120mW power with a 5-V supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although metalorganic vapor phase epitaxy (MOVPE) is generally regarded as a non-equillibrium process, it can be assumed that a chemical equilibrium is established at the vapor-solid interface in the diffusion limited region of growth rate. In this paper, an equilibrium model was proposed to calculate the relation between vapor and solid compositions for II-VI ternary alloys. Metastable alloys in the miscibility gap may not be obtained when the growth temperature is lower than the critical temperature of the system. The influence of growth temperature, reactor pressure, input VI/II ratio, and input composition of group VI reactants has been calculated for ZnSSe, ZnSeTe and ZnSTe. The results are compared with experimental data for the ZnSSe and ZnSTe systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a wide tuning range CMOS frequency synthesizer for a dual-band GPS receiver,which has been fabricated in a standard 0.18μm RF CMOS process. With a high Q on-chip inductor, the wide-band VCO shows a tuning range from 2 to 3.6GHz to cover 2.45 and 3.14GHz in case of process corner or temperature variation,with a current consumption varying accordingly from 0.8 to 0.4mA,from a 1.8V supply voltage. Measurement results show that the whole frequency synthesizer consumes very low power of 5.6mW working at L1 band with in-band phase noise less than - 82dBc/Hz and out-of-band phase noise about - ll2dBc/Hz at 1MHz offset from a 3. 142GHz carrier. The performance of the frequency synthesizer meets the requirements of GPS applications very well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the design of a wide-band low-noise amplifier (LNA) implemented in 0.35μm SiGe BiCMOS technology for cable and terrestrial tuner applications. The LNA utilizes current injection to achieve high linearity. Without using inductors, the LNA achieves 0.1 ~ 1GHz wide bandwidth and 18. 8dB gain with less than 1.4dB of gain variation. The noise figure of the wideband LNA is 5dB, and its 1dB compression point is - 2dBm and IIP3 is 8dBm. The LNA dissipates 120mW of power with a 5V supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze a wide-band,high-linearity down-conversion mixer for cable receptions that is implemented in 0. 35μm SiGe BiCMOS technology. The bandwidth of the RF (radio frequency) input covers the range from 1 to 1.8GHz. The measured input power at the - 1dB compression point of the mixer reaches + 14.23dBm. The highest voltage conversion gain is 8. 31dB, while the lowest noise figure is 19.4dB. The power consumed is 54mW with a 5V supply. The test result of the down-conversion mixer is outlined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A semiconductor optical amplifier gate based on tensile-strained quasi-bulk InGaAs is developed. At injection current of 80mA,a 3dB optical bandwidth of more than 85nm is achieved due to dominant band-filling effect.Moreover, the most important is that very low polarization dependence of gain (<0. 7dB),fiber-to-fiber lossless operation current (70~90mA) and a high extinction ratio (>50dB) are simultaneously obtained over this wide 3dB optical bandwidth (1520~1609nm) which nearly covers the spectral region of the whole C band (1525~1565nm)and the whole L band (1570~ 1610nm). The gating time is also improved by decreasing carrier lifetime. The wideband polarization-insensitive SOA-gate is promising for use in future dense wavelength division multiplexing (DWDM) communication systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range. Moreover, in order to investigate impacts of locally resonant units, some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An ultra-wide-band frequency response measurement system for optoelectronic devices has been established using the optical heterodyne method utilizing a tunable laser and a wavelenath-fixed distributed feedback laser. By controlling the laser diode cavity length, the beat frequency is swept from DC to hundreds GHz. An outstanding advantage is that this measurement system does not need any high-speed light modulation source and additional calibration. In this measurement, two types of different O/E receivers have been tested. and 3 dB bandwidths measured by this system were 14.4GHz and 40GHz, respectively. The comparisons between experimental data and that from manufacturer show that this method is accurate and easy to carry out.