103 resultados para titanium silicalite
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Titanium silicalite (TS-1) was successfully synthesized by using TPABr as the template and silica sol as silicon source in a 100 l stainless steel autoclave. IR, XRD, UV--vis, elemental analysis, and (2)7Al and (3)1P MAS NMR were used to characterize the synthesized products. The results show that the synthesized material has an MFI structure with high crystallinity and large crystal size and two kinds of titanium species. Trace aluminum in silica sol is also incorporated into the zeolite framework. The synthesized TS-1 exhibits high activity in the epoxidation of propylene with dilute H2O2 with high selectivity to methyl mono-ethers and low selectivity to propylene oxide (PO). The low selectivity toward PO is due to the residual acidity onto TS-1. The selectivity of PO can reach up to 90% through adjusting the pH of the reaction mixture. Extra amounts of base decrease the H2O2 utilization and the H2O2 conversion. However, in over acid-treated TS-1 in which part removal of extra-framework titanium takes place, the utilization of H2O2 is quite different: for the low Si/Ti ratio of TS-1, the H2O2 utilization increases. But the utilization of H2O2 does not change for the high Si/Ti ratio TS-1. Thermal analysis shows that the as-synthesized TS-1 exhibits high activity and thermal stability in the calcined range 540-900 degreesC.
Resumo:
The titanium species existing in titanium silicalite TS-1, which is prepared by hydrothermal method, were investigated using chemical analysis, XRD, FT-IR, Si-29 MAS NMR, UV-VIS, ESR. It has been observed that several kinds of titanium species may exist in titanium silicalite. The form that titanium atoms incorporate into the framework of titanium silicalite synthesized using tetrapropylammonium bromide (TPABr) as template differs from that using the classical method. But, the symmetry of titanium silicalite, changes from monoclinic to orthorhombic with the increase of titanium content in both methods. The Ti-O-2(-) originated from framework titanium and H2O2 has the moderate stability and may be active site in oxidation reaction. TS-1 synthesized using TPABr as template does not contain anatase, but contains a kind of partly condensed titanium species with six-fold coordination. The titanium species may correspond to 270-280 mn band in UV-VIS spectra and also can form Ti-O-2(-). But, this kind of Ti-O-2(-) is very stable and cannot be catalytic active site. So, the six-fold coordination titanium species may be inactive in both the oxidation reaction and the decomposition of H2O2. The hypothesis has been further proved by the phenomena that the titanium species is easily washed off using acid, and acid treating will not influence the catalytic performance of TS-1. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Titanium silicalites have been synthesized in the TPABr+ammonia, TPABr+hexanediamine, TPABr+ethylenediamine, TPABr+diethylamine, TPABr+TEAOH, TPABr+n-butylamine, TPABr+TBAOH and TBAOH+n-butylamine systems. As-synthesized titanium silicalites were characterized by XRD, IR and C-13 CP MAS NMR. Catalytic performance in epoxidation of propylene and template effect was investigated. It has been shown that both TPABr and TBAOH serve as templating agent in TPABr+TBAOH system. But in other systems, when there is enough TPABr, organic amines or ammoniums only act as the bases. TEAOH or n-butylamine can take the role of template when less TPABr is added. It indicates that the ability of organic amines or ammoniums to direct the Pentasil structure decreases as follows: TPA(+)>TBA(+)>TEA(+)>n-butylamine. Catalysts exhibiting good performance in epoxidation of propylene can be attained using TPABr as the template and ammonia, n-butylamine, diethylamine, hexanediamine or TBAOH as bases. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The role of Bronsted acidity of titanium silicalite zeolite (with different ratios of Si/Ti) in oxidation reactions of styrene has been investigated and discussed. For zeolites with Si/Ti > 42, most of the titanium is in the zeolite framework. These framework titanium species, which act both as the isolated titanium centers and as Bronsted acidity centers (together with the Bronsted acidity produced by the tetrahedral aluminum impurity introduced during synthesis), can catalyze both the epoxidation and the succeeding rearrangement reactions, thus promoting the formation of phenylacetaldehyde. With an increase in the titanium content of the zeolite, titanium will tend to stay outside the zeolite lattice, except for the TiOx nanophases which can be occluded in the zeolite channels or on the external surface. These non-framework titanium species are favorable for the carbon-carbon bond scission, leading to the production of additional benzaldehyde. The catalytic performances of these zeolites with different Si/Ti ratios are correlated here with their structural information by using solid-state NMR and UV-Vis methods. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Ferric trisacetylacetonate has been deposited within the zeolite MCM-41 and the product characterized by XRD and IR. In water at pH 7 it catalyzes the oxidation of phenol by H2O2, giving 58% conversion in 1 h at 50 degrees C: products are catechol (66%), hydroquinone (27%) and benzoquinone (7%). Other oxidants and solvents are much less effective. UV-VIS spectra suggest a radical substitution mechanism, and a pollution-free process for phenol hydroxylation is now possible.
Resumo:
Iron(II)-8-quinolino/MCM-41 is prepared. Its catalysis is studied in phenol hydroxylation using H2O2 (30%) as oxidant. The experiment shows that Iron(II)-8-quinolinol/MCM-41 has good catalytic activity and desired stability. Based on cyclic voltammetry, ESR, and UV-visible spectra studies of iron(II)-8-quinolinol complex in liquid phase, a radical substitution mechanism is proposed and used to demonstrate the experimental facts clearly. (C) 1997 Academic Press.
Resumo:
Phenol hydroxylation catalyzed by iron(II)-1,10-phenanthroline is investigated through kinetics, ESR, W-Vis as well as cyclic voltammogram studies. The optimum reaction conditions are obtained for diphenols production. Radical substitution mechanism is first proposed to explain the effects of pH, reaction medium and other factors on the phenol hydroxylation with H2O2 as oxidant, and found that the coexisting of iron(II)-1,10-phenanthroline and iron(III)-1,10-phenanthroline is the key for phenol hydroxylation to occur with H2O2 as oxygen donor.
Resumo:
MCM-41 zeolite and Tron (II)-Phen/MCM-41 zeolite have been prepared and characterized by XRD, IR, NH3-TPD, HET and UV-Vis. The Iron( II)-Phen/MCM-41 zeolite+30% H2O2 system is capable for catalyzing hydroxylation of phenol.
Resumo:
MCM-41 mesoporous molecular sieve and iron(II)-Phen/MCM-41 have been prepared and characterized by XRD, IR, NH3-TPD, BET and UV-Vis. The iron(II)-Phen/MCM-41 molecular sieve + 30% H2O2 system is capable of performing hydroxylation of phenol.
Resumo:
The titanium species in four kinds of titanium-containing MFI zeolites have been studied by ultraviolet (UV)-Raman and ultraviolet visible (UV-Vis) absorption spectroscopies and by the epoxidation of propylene with diluted H2O2 solution (30%). UV-Raman spectroscopy is proved to be a suitable means to estimate qualitatively the framework titanium in TS-l zeolites. Based on the comparison of the relative intensity ratio I-1125/I-380 of UV-Raman spectra, the TS-1(conv.) sample synthesized hydrothermally by the conventional procedure shows the highest amount of framework titanium. UV-Vis spectroscopy reveals that besides minor anatase. titanium species are mainly tetrahydrally coordinated into the framework for TS-l(conv.) or the Ti-ZSM-5 sample prepared by gas-solid reaction between deboronated B-ZSM-5 and TiCl4 vapor at elevated temperatures. For the TS-1(org.) and TS-1(inorg.) samples synthesized hydrothermally using tetrapropylammonium bromide (TPABr) as template and tetrabutylorthotitanite (TBOT) and TiCl3 as titanium source, respectively, the presence of mononuclear and isolated TiOx species which are proposed to bond to the zeolite extraframework is observed. In addition to the framework titanium species, these isolated TiOx species are assumed to be also active for propylene epoxidation.
Resumo:
Framework titanium in Ti-silicalite-1 (TS-1) zeolite was selectively identified by its resonance Raman bands using ultraviolet (W) Raman spectroscopy. Raman spectra of the TS-1 and silicalite-1 zeolites were obtained and compared using continuous wave laser lines at 244, 325, and 488 nm as the excitation sources. It was only with the excitation at 244 nm that resonance enhanced Raman bands at 490, 530, and 1125 cm(-1) appeared exclusively for the TS-1 zeolite. Furthermore, these bands increased in intensity with the crystallization time of the TS-1 zeolite. The Raman bands at 490, 530, and 1125 cm(-1) are identified as the framework titanium species because they only appeared when the laser excites the charge-transfer transition of the framework titanium species in the TS-1. No resonance Raman enhancement was detected for the bands of silicalite-1 zeolite and for the band at 960 cm(-1) of TS-1 with any of the excitation sources ranging from the visible tb UV regions. This approach can be applicable for the identification of other transition metal ions substituted in the framework of a zeolite or any other molecular sieve.
Resumo:
alpha-titanium and its alloys with a dual-phase structure (alpha+beta) were deformed dynamically under strain rate of about 10(4) s(-1). The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9 x 10(5) s(-1)) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from alpha to alpha(2) within the bands was observed, and the transformation products (alpha(2)) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 mu m in diameter observed within the bands are proposed to be the results of recrystallization.