11 resultados para threonine

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Serine/threonine kinases (STKs) have been found in an increasing number of prokaryotes, showing important roles in signal transduction that supplement the well known role of two-component system. Cyanobacteria are photoautotrophic prokaryotes able to grow in a wide range of ecological environments, and their signal transduction systems are important in adaptation to the environment. Sequence information from several cyanobacterial genomes offers a unique opportunity to conduct a comprehensive comparative analysis of this kinase family. In this study, we extracted information regarding Ser/Thr kinases from 21 species of sequenced cyanobacteria and investigated their diversity, conservation, domain structure, and evolution. Results: 286 putative STK homologues were identified. STKs are absent in four Prochlorococcus strains and one marine Synechococcus strain and abundant in filamentous nitrogen-fixing cyanobacteria. Motifs and invariant amino acids typical in eukaryotic STKs were conserved well in these proteins, and six more cyanobacteria- or bacteria-specific conserved residues were found. These STK proteins were classified into three major families according to their domain structures. Fourteen types and a total of 131 additional domains were identified, some of which are reported to participate in the recognition of signals or substrates. Cyanobacterial STKs show rather complicated phylogenetic relationships that correspond poorly with phylogenies based on 16S rRNA and those based on additional domains. Conclusion: The number of STK genes in different cyanobacteria is the result of the genome size, ecophysiology, and physiological properties of the organism. Similar conserved motifs and amino acids indicate that cyanobacterial STKs make use of a similar catalytic mechanism as eukaryotic STKs. Gene gain-and-loss is significant during STK evolution, along with domain shuffling and insertion. This study has established an overall framework of sequence-structure-function interactions for the STK gene family, which may facilitate further studies of the role of STKs in various organisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report, we studied on a homoplasmic T12338C change in mitochondrial DNA (mtDNA), which substituted methionine in the translational initiation codon of the NADH dehydrogenase subunit 5 gene (ND5) with threonine. This nucleotide change was originall

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Further to the previous finding of the rainbow trout rtCATH_1 gene, this paper describes three more cathelicidin genes found in salmonids: two in Atlantic salmon, named asCATH_1 and asCATH_2, and one in rainbow trout, named rtCATH_2. All the three new salmonid cathelicidin genes share the common characteristics of mammalian cathelicidin genes, such as consisting of four exons and possessing a highly conserved preproregion and four invariant cysteines clustered in the C-terminal region of the cathelin-like domain. The asCATH_1 gene is homologous to the rainbow trout rtCATH_1 gene, in that it possesses three repeat motifs of TGGGGGTGGC in exon IV and two cysteine residues in the predicted mature peptide, while the asCATH_2 gene and rtCATH_2 gene are homologues of each other, with 96% nucleotide identity. Salmonid cathelicidins possess the same elastase-sensitive residue, threonine, as hagfish cathelicidins and the rabbit CAP18 molecule. The cleavage site of the four salmonid cathelicidins is within a conserved amino acid motif of QKIRTRR, which is at the beginning of the sequence encoded by exon W. Two 36-residue peptides corresponding to the core part of rtCATH_1 and rtCATH_2 were chemically synthesized and shown to exhibit potent antimicrobial activity. rtCATH_2 was expressed constitutively in gill, head kidney, intestine, skin and spleen, while the expression of rtCATH_1 was inducible in gill, head kidney, and spleen after bacterial challenge. Four cathelicidin genes have now been characterized in salmonids and two were identified in hagfish, confirming that cathelicidin genes evolved early and are likely present in all vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oocyte maturation and egg fertilization in both vertebrates and invertebrates are marked by orchestrated cytoplasmic translocation of secretory vesicles known as cortical granules. It is thought that such redistribution of cellular content is critical for asymmetrical cell division during early development, but the mechanism and regulation of the process is poorly understood. Here we report the identification, purification and cDNA cloning of a C-type lectin from oocytes of a freshwater fish species gibel carp (Carassius auratus gibelio). The purified protein has been demonstrated to have lectin activity and to be a Ca2+-dependent C-type lectin by hemagglutination activity assay. Immunocytochemistry revealed that the lectin is associated with cortical granules, gradually translocated to the cell surface during oocyte maturation, and discharged to the egg envelope upon fertilization. Interestingly, the lectin becomes phosphorylated on threonine residues upon induction of exocytosis by fertilization and returns to its original state after morula stage of embryonic development, suggesting that this posttranslational modification may represent a critical molecular switch for early embryonic development. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new gene with WD domains is cloned and characterized according to its differential transcription and expression between previtellogenic oocytes (phase I oocytes) and fully-grown oocytes (phase V oocytes) from natural gynogenetic silver crucian carp (Carassius auratus gibelio) by using the combinative methods of suppressive subtraction hybridization, SMART cDNA synthesis and RACE-PCR. The full-length cDNA is 1870 bp. Its 5 ' untranslated region is 210 bp, followed by an open reading frame of 990 bp, which has the typical vertebrate initiator codon of ANNATG. The open reading frame encodes a protein with 329 amino acids. It has 670 bp of 3 ' untranslated region and an AATAAA polyadenylation signal. Because it has 92% homology to STRAP (serine-threonine kinase receptor-associated protein), a recently reported gene, we named it FSTRAP (fish STRAP). Virtual Northern blotting indicated that the FSTRAP was transcribed in fully-grown oocytes (phase V oocytes), but not in previtellogenic oocytes (phase I oocytes). RT-PCR analysis showed that FSTRAP was transcribed in brain, heart, kidney, muscle, ovary, spleen and testis, but not in liver. And its mRNA could be detected in the oocytes from phase II to phase V. Western blotting also showed that FSTRAP protein could be detected in brain, heart, kidney, muscle, ovary, spleen and testis except liver. Results of Western blotting on various oocytes were also similar to the RT-PCR data. FSTRAP protein was not expressed in the previtellogenic oocytes. Its expression initiated from phase II oocytes after vitellogenesis, and was consistent with the mRNA transcription.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Artemia has evolved a unique developmental pattern of encysted embryos to cope with various environmental threats. Cell divisions totally cease during the preemergence developmental stage from gastrula to prenauplius. The molecular mechanism of this, however, remains unknown. Our study focuses on the involvement of p90 ribosomal S6 kinase (RSK), a family of serine/threonine kinase-mediating signal transduction downstream of mitogen-activated protein kinase cascades, in the termination of cell cycle arrest during the post-embryonic development of Artemia-encysted gastrula. With immunochemistry, morphology, and cell cycle analysis, the identified Artemia RSK was established to be specifically activated during the post-embryonic and early larval developmental stages when arrested cells of encysted embryos resumed mitoses. In vivo knockdown of RSK activity by RNA interference, kinase inhibition, and antibody neutralization consistently induced defective larvae with distinct gaps between the exoskeleton and internal tissues. In these abnormal individuals, mitoses were detected to be largely inhibited in the affected regions. These results display the requirement of RSK activity during Artemia development and suggest its role in termination of cell cycle (G(2)/M phase) arrest and promotion of mitogenesis. Our findings may, thus, provide insights into the regulation of cell division during Artemia post-embryonic development and reveal further aspects of RSK functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

螺旋藻(Spirulina),是丝状不形成异型胞的蓝藻,由于其所蕴涵的高品质营养成分而成为一属具有重要经济价值的微藻。丝氨酸/苏氨酸激酶(serine/threonine kinases,STK)系统在螺旋藻的信号转导中发挥了重要作用。螺旋藻生活环境复杂,其中温度是中国北方温带地区螺旋藻大规模养殖的主要限制性因素。本文克隆了一条螺旋藻STK基因,并初步从STK激酶基因家族的角度探索了螺旋藻对高温环境的适应。主要结果如下: 1. 构建了插入片段为1-2kb的螺旋藻基因组文库。基于该文库用简并引物PCR的方法得到了一条螺旋藻STK基因5'端长度为504bp的基因组序列。 2.以本实验室构建的螺旋藻基因组草图为基础,在基因组水平上研究了螺旋藻STK基因家族的特点。发现螺旋藻草图中STK基因家族共包含33个基因,这些基因基于蛋白结构域分析可以分为三大类群。序列保守性分析发现,螺旋藻STK激酶具有与真核STK激酶相同的保守域,此外螺旋藻STK激酶还具有特有的保守氨基酸。 3.在中国北方温带地区,螺旋藻大规模养殖的主要限制性因素是温度。由于北方地区温度较低,螺旋藻规模养殖普遍存在年养殖期较短的问题,造成设备浪费,若采用加温措施又增加养殖成本;而在夏季晴天中午,又存在高温胁迫的问题。跨膜蛋白是信号转导的第一阶段,因此我们设置了不同温度来诱导螺旋藻,对其中7个跨膜STK基因进行半定量RT-PCR分析,结果显示STK2103在不同温度下表达量不同,推测该蛋白参与了螺旋藻温度相关的信号转导过程。 本文将基础研究与实验验证相结合,为螺旋藻的信号转导研究提供了线索。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ser/Thr蛋白激酶(serine/threonine kinases,STK)在真核生物的信号转导通路中具有重要作用,而且已经成为对抗肿瘤、结核等多种人类疾病的药物作用靶点。上世纪九十年代,有研究发现STK在原核生物的信号转导中也发挥重要作用。本论文以聚球藻PCC7942(Synechococcus sp. PCC7942)和钝顶螺旋藻(Spirulina platensis)为材料,对几个真核型的Ser/Thr蛋白激酶基因的功能进行了初步验证。 蓝藻兼具细菌和植物的特点,具有成熟的转化体系,为真核生物基因功能的研究提供了新的模式宿主。聚球藻PCC7942是一种单细胞的淡水蓝藻,具有天然的外源DNA转化系统,是蓝藻分子遗传学研究的模式生物。通过基因敲除及表达差异分析发现聚球藻PCC7942中的Ser/Thr蛋白激酶stk196参与高温胁迫的信号传递。钝顶螺旋藻是原核丝状蓝藻,由于其蕴涵高品质营养成分而成为一类具有重要经济价值的微藻,该研究利用半定量RT-PCR方法,分析四个具有跨膜结构域的Ser/Thr蛋白激酶在正常生长温度下和经低温、高温诱导后表达量的变化情况,发现stk2103在低温诱导后的表达量降低,高温诱导后的表达量升高,提示该基因的表达可能参与了钝顶螺旋藻对温度的适应。 蓝藻中真核型Ser/Thr蛋白激酶功能的研究为我们进一步研究真核生物的Ser/Thr蛋白激酶功能提供了借鉴,并对植物抗逆胁迫的研究提供重要的理论依据。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel norvancomycin-bonded chiral stationary phase (NVC-CSP) was synthesized by using the chiral selector of norvancomycin. The chiral separation of enantiomers of several dansyl-amino acids by high-performance liquid chromatography (HPLC) in the reversed-phase mode is described. The effects of some parameters, such as organic modifier concentration, column temperature, pH and flow rate of the mobile phase, on the retention and enantioselectivity were investigated. The study showed that ionic, as well as hydrophobic interactions were engaged between the analyte and macrocycle in this chromatographic system. Increasing pH of buffers usually improved the chiral resolution for dansyl-alpha-amino-n-butyric acid (Dns-But), dansyl-methionine (Dns-Met) and dansyl-threonine (Dns-Thr), but not for dansyl-glutamic acid (Dns-Glu) which contains two carboxylic groups in its molecular structure. The natural logarithms of selectivity factors (In alpha) of all the investigated compounds depended linearly on the reciprocal of temperature (1/T), most processes of enantioseparation were controlled enthalpically. Interestingly, the process of enantioseparation for dansyl-threonine was enthalpy-controlled at pH of 3.5, while at pH of 7.0, it was entropy-controlled according to thermodynamic parameters Delta(R,S)DeltaHdegrees and Delta(R,S)DeltaSdegrees afforded by Van't Hoff plots. In order to get baseline separation for all the solutes researched, norvancomycin was also used as a chiral mobile phase additive. In combination with the NVC-CSP remarkable increases in enanselectivity were observed for all the compounds, as the result of a "synergistic" effect. (C) 2003 Elsevier B.V. All rights reserved.