76 resultados para three-shell model
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An unsteady and three-dimensional model of the floating-half-zone convection on the ground is studied by the direct numerical simulation for the medium of 10 cSt silicon oil, and the influence of the liquid bridge volume on the critical applied temperature difference is especially discussed. The marginal curves for the onset of oscillation are separated into two branches related, respectively, to the slender liquid bridge and the fat liquid bridge. The oscillatory features of the floating-half-zone convection are also discussed.
Resumo:
We propose a procedure to determine the effective nuclear shell-model Hamiltonian in a truncated space from a self-consistent mean-field model, e.g., the Skyrme model. The parameters of pairing plus quadrupole-quadrupole interaction with monopole force are obtained so that the potential energy surface of the Skyrme Hartree-Fock + BCS calculation is reproduced. We test our method for N = Z nuclei in the fpg- and sd-shell regions. It is shown that the calculated energy spectra with these parameters are in a good agreement with experimental data, in which the importance of the monopole interaction is discussed. This method may represent a practical way of defining the Hamiltonian for general shell-model calculations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A systematic study of neutron-rich even-even Fe isotopes with a neutron number from 32 to 42 is carried out by using the projected shell model. Calculations are performed up to the spin I=20 state. Irregularities found in the yrast spectra and in B (E2) values are discussed in terms of neutron excitations to the high-j orbital g(9/2). Furthermore, the neutron two-quasiparticle structure of a low-K negative-parity band and the proton two-quasiparticle structure of a high-K positive-parity band are predicted to exist near the yrast region. Our study reveals a soft nature for the ground state of N approximate to 40 isotopes and emphasizes the important role of the neutron g(9/2) orbital in determining the structure properties for both low- and high-spin states in these nuclei.
Resumo:
The structure of neutron-rich Cr isotopes is systematically investigated by using the spherical shell model. The calculations reproduce well the known energy levels for the even-even Cr52-62 and odd-mass Cr53-59 nuclei, and predict a lowering of excitation energies around neutron number N = 40. The calculated B(E2; 2(1)(+) -> 0(1)(+)) systematics shows a pronounced collectivity around N = 40; a similar characteristic behavior has been suggested for Zn and Ge isotopes. Causes for the sudden drop of the 9/2(1)(+) energy in Cr-59 and the appearance of very low 0(2)(+) states around N = 40 are discussed. We also predict a new band with strong collectivity built on the 0(2)(+) state in the N = 40 isotope Cr-64.
Resumo:
A shape phase transition is demonstrated to occur in W-190 by applying the projected shell model, which goes beyond the usual mean-field approximation. Rotation alignment of neutrons in the high-j, i(13/2) orbital drives the yrast sequence of the system, changing suddenly from prolate to oblate shape at angular momentum 10h. We propose observables to test the picture.
Resumo:
Inspired by the recent experimental data [J.-G. Wang, et al., Phys. Lett. B 675 (2009) 420], we extend the triaxial projected shell model approach to study the gamma-band structure in odd-mass nuclei. As a first application of the new development, the gamma-vibrational structure of Nb-103 is investigated. It is demonstrated that the model describes the ground-state band and multi-phonon gamma-vibrations quite satisfactorily, supporting the interpretation of the data as one of the few experimentally-known examples of simultaneous occurrence of one- and two-gamma-phonon vibrational bands. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei built on the ground-state in even-even systems to gamma-bands based on quasiparticle configurations in odd-mass systems. (c) 2010 Elsevier BM. All rights reserved.
Resumo:
Motivated by recent spectroscopy data from fission experiments, we apply the projected shell model to study systematically the structure of strongly deformed, neutron-rich, even-even Nd and Sm isotopes with neutron number from 94 to 100. We perform calculations for rotational bands up to spin I = 20 and analyze the band structure of low-lying states with quasiparticle excitations, with emphasis given to rotational bands based on various negative-parity two-quasiparticle (2-qp) isomers. Experimentally known isomers in these isotopes are described well. The calculations further predict proton 2-qp bands based on a 5(-) and a 7(-) isomer and neutron 2-qp bands based on a 4(-) and an 8(-) isomer. The properties for the yrast line are discussed, and quantities to test the predictions are suggested for future experiment.
Resumo:
A three-phase piezoelectric cylinder model is proposed and an exact solution is obtained for the model under a farfield antiplane mechanical load and a far-field inplane electrical load. The three-phase model can serve as a fiber/interphase layer/matrix model, in terms of which a lot of interesting mechanical and electrical coupling phenomena induced by the interphase layer are revealed. It is found that much more serious stress and electrical field concentrations occur in the model with the interphase layer than those without any interphase layer. The three-phase model can also serve as a fiber/matrix/composite model, in terms of which a generalized self-consistent approach is developed for predicting the effective electroelastic moduli of piezoelectric composites. Numerical examples are given and discussed in detail.
Resumo:
A new band in the odd proton nucleus I-123 is identified via in- beam gamma- ray spectroscopy using the N-14+Cd-116 reaction. This band shows up as doublets with the previously assigned pi g(7/2) circle times (nu h(11/2))(2) band. Possible configurations of the new band are discussed in the framework of the cranked shell model and the geometrical model. It is argued that the new band might be a chiral partner of the previously known pi g(7/2) circle times (nu h(11/2))(2) band.
Resumo:
The shell effect is included in the improved isospin dependent quantum molecular dynamics model in which the shell correction energy of the system is calculated by using the deformed two-center shell model. A switch function is introduced to connect the shell correction energy of the projectile and the target with that of the compound nucleus during the dynamical fusion process. It is found that the calculated capture cross sections reproduce the experimental data quantitatively at the energy near the Coulomb barrier. The capture cross sections for reaction (35) (80) Br + (82) (208) Pb -> (117) (288) X are also calculated and discussed.
Resumo:
Using a shell model which is capable of describing the spectra of upper g(9/2)-shell nuclei close to the N = Z line, we study the structure of two isomeric states 7(+) and 21(+) in the odd-odd N = Z nucleus Ag-94. It is found that both isomeric states exhibit a large collectivity. The 7(+) state is oblately deformed, and is suggested to be a shape isomer in nature. The 21(+) state becomes isomeric because of level inversion of the 19(+) and 21(+) states due to core excitations across the N = Z = 50 shell gap. Calculation of spectroscopic quadrupole moment indicates clearly an enhancement in these states due to the core excitations. However, the present shell model calculation that produces the 19(+)-21(+) level inversion cannot accept the large-deformation picture of Mukha et al.
Resumo:
A perturbational h4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes, the h4 accuracy of the perturbational scheme is verified using double precision arithmetic.