3 resultados para thermophysics
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This article derives and provides a theoretical analysis for the mechanical erosion of carbon-base materials in ablation. The theory of mechanical erosion based on a nondimensional critical roughness parameter is proposed, The important parameters in this analytical method are independent of the test, The analysis accounts for the heating, pressure, and shear forces acting on material particles exposed to the boundary-layer flow. For the validity of a theoretical analytical method a computational example is given. The theoretical results agree fairly with the experimental data.
Resumo:
利用OM及FEM研究了铁基合金Nd:YAG脉冲激光熔凝区的几何形态及其变化规律、以及熔凝的热物理过程;利用OM、SEM、TEM、X-射线衍射仪及磨损实验机,研究了两种铁基热模具材料脉冲激光熔凝组织及其时效组织结构,以及熔凝区规则离散分布规律对材料抗磨损性能的影响。在10~5~10~7W/cm~2的脉冲激光平均功率密度范围内,可得到热传导型和深熔型两类强化区,当临界平均功率密度大于5 * 10~5W/cm~2,同时临界激光作用时间大于2ms时,热传导型强休区向深熔型强休区转变。熔化过程中,在熔池中形成上部以对流传热为主,底部以导热为主的传热模式,流场、温度场和压力场均随脉冲激光作用时间变化,最大流速、压力和温度梯度分别可达100m/s、数个大气压和10~(8-9) ℃C/m量级。凝固过程中,固液界面上的最大温度梯度、凝固速率和冷却速度时间和空间位置变化,分别可达10~(8-9) ℃/m量级、10~(-1)m/s量级和10~(7-8) ℃/s量级,其中冷却速度得到实验验证。亚共晶合金铸铁脉冲激光熔凝组织为δ-铁素体与M_3C的层片状共晶组织,还含有部分γ-奥氏体和少量的高碳孪晶马氏体组织,δ-铁素体和γ-奥氏体中均存在高密度位错亚结构。5CrMnMo钢脉冲激光熔凝组织由板条马氏体及少量的孪晶马氏体构成,马氏体中也存在高密度位错亚结构。上述两种组织经高温时效后,仍保持较细的晶粒,并有大量细小均匀弥散分布的碳化物析出,其中铸铁熔凝组织析出M_(23)C_6碳化物,M_(23)C_6可在M_3C/γ-奥氏体相界面或M_3C内部原位形核,亦可在δ-铁素体中弥散析出。两种材料的熔凝组织及其时效组织的显微硬度均明显高于相应的原始组织,也高于激光连续扫描熔凝的结果。脉冲激光规则离散熔凝加工在材料表面形成软硬相间的“原位”功能层,能显著降低裂纹形成的敏感性,提高材料表层的抗磨粒磨损性能,时效后仍具有较好的抗磨损性能。以熔凝强化区直径作为中心间距进行规则离散熔凝处理可使材料表面获得最佳抗磨损性能。
Resumo:
The heat transfer characteristics of China no. 3 kerosene were investigated experimentally and analytically under conditions relevant to a regenerative cooling system for scramjet applications. A test facility developed for the present study can handle kerosene in a temperature range of 300-1000 K, a pressure range of 2.6-5 MPa, and a mass How rate range of 10-100 g/s. In addition, the test section was uniquely designed such that both the wall temperature and the bulk fuel temperature were measured at the same location along the flowpath. The measured temperature distributions were then used to analytically deduce the local heat transfer characteristics. A 10-component kerosene surrogate was proposed and employed to calculate the fuel thermodynamic and transport properties that were required in the heat transfer analysis. Results revealed drastic changes in the fuel flow properties and heat transfer characteristics when kerosene approached its critical state. Convective heat transfer enhancement was also found as kerosene became supercritical. The heat transfer correlation in the relatively low-fuel-temperature region yielded a similar result to other commonly used jet fuels, such as JP-7 and JP-8, at compressed liquid states. In the high-fuel-temperature region, near and beyond the critical temperature, heat transfer enhancement was observed; hence, the associated correlation showed a more significant Reynolds number dependency.