84 resultados para terrestrial ecosystems

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Integrated Environmental Monitoring (IEM) project, part of the Asia-Pacific Environmental Innovation Strategy (APEIS) project, developed an integrated environmental monitoring system that can be used to detect, monitor, and assess environmental disasters, degradation, and their impacts in the Asia-Pacific region. The system primarily employs data from the moderate resolution imaging spectrometer (MODIS) sensor on the Earth Observation System- (EOS-) Terra/Aqua satellite,as well as those from ground observations at five sites in different ecological systems in China. From the preliminary data analysis on both annual and daily variations of water, heat and CO2 fluxes, we can confirm that this system basically has been working well. The results show that both latent flux and CO2 flux are much greater in the crop field than those in the grassland and the saline desert, whereas the sensible heat flux shows the opposite trend. Different data products from MODIS have very different correspondence, e.g. MODIS-derived land surface temperature has a close correlation with measured ones, but LAI and NPP are quite different from ground measurements, which suggests that the algorithms used to process MODIS data need to be revised by using the local dataset. We are now using the APEIS-FLUX data to develop an integrated model, which can simulate the regional water,heat, and carbon fluxes. Finally, we are expected to use this model to develop more precise high-order MODIS products in Asia-Pacific region.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The eddy covariance technique provides measurements of net ecosystem exchange (NEE) Of CO2 between the atmosphere and terrestrial ecosystems, which is widely used to estimate ecosystem respiration and gross primary production (GPP) at a number Of CO2 eddy flux tower sites. In this paper, canopy-level maximum light use efficiency, a key parameter in the satellite-based Vegetation Photosynthesis Model (VPM), was estimated by using the observed CO2 flux data and photosynthetically active radiation (PAR) data from eddy flux tower sites in an alpine swamp ecosystem, an alpine shrub ecosystem and an alpine meadow ecosystem in Qinghai-Tibetan Plateau, China. The VPM model uses two improved vegetation indices (Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI)) derived from the Moderate Resolution Imaging Spectral radiometer (MODIS) data and climate data at the flux tower sites, and estimated the seasonal dynamics of GPP of the three alpine grassland ecosystems in Qinghai-Tibetan Plateau. The seasonal dynamics of GPP predicted by the VPM model agreed well with estimated GPP from eddy flux towers. These results demonstrated the potential of the satellite-driven VPM model for scaling-up GPP of alpine grassland ecosystems, a key component for the study of the carbon cycle at regional and global scales. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

  作为西部大开发的关键地区,西北干旱区由于地理位置和环境条件的独特性、生态系统的脆弱性以及人类活动的长期干扰,对其周边乃至全国的生态环境有较大的影响,在这一地区研究植物种分布与气候的关系,并模拟预测其可能的潜在分布范围,具有理论上和实践上的重要意义。   通过广泛收集了西北干旱区优势种和常见种的地理分布资料,共选择128个植物种,利用Holdridge的生命地带分类系统,计算各植物种的生物温度(BT)、可能蒸散(PE)、降水量(P)及可能蒸散率(PER),分析植物种与气候的相互关系,并将所有植物种进行经验归纳分类。随后,对这砦植物种及其气候信息进行TWINSPAN定量分类,并与经验分类结果相比较,得出西北干旱区128种植物的生态气候分类,分属于以下几大类型:高寒草甸、森林一草原过渡带、草原(典型草原、荒漠草原)、荒漠(草原化荒漠、荒漠、高寒荒漠)。具体来说,包括以下17个生态气候类型: 1)高寒草甸:异针茅。 2)森林一草原过渡带:牛尾蒿、鬼箭锦鸡儿、沙棘。 3)草原a:沙蒿。 4)草原b:长芒草、百里香(变种)、多叶隐子草、贝加尔针茅、大针茅。 5)草原c:羊茅、小叶锦鸡儿、荒漠锦鸡儿、线叶菊、华北岩黄芪、廿青针茅、碱蒿、内蒙古沙蒿、裂叶蒿、狭叶锦鸡儿、山竹岩黄芪、女蒿、小蓬、两伯利亚杏、沙地柏、角果碱篷、霸王、糙隐子草。 6)草原d:紫狐茅、紫花针茅。 7)草原一荒漠草原a:包括沙竹、琵琶柴、吉尔吉斯针茅。 8)草原一荒漠草原b:华北米蒿、差巴嘎蒿、星星草、长芒针茅、铁竿蒿、柠条锦鸡儿。 9)荒漠草原:沙生冰草、蒙古冰草、羊草、冷蒿、中亚紫菀木、刺旋花、老瓜头、木贼麻黄、西伯利亚白刺、唐古特白刺、戈壁针茅、石生针茅、盐地碱蓬、冰草、蓍状亚菊、油蒿、木蓼、刺针枝蓼、长枝木蓼、中间锦鸡儿、尖叶盐爪爪、黄花琵琶柴、松叶猪毛菜、珍珠猪毛菜、东方针茅、囊果碱蓬、四合木、白滨藜、短脚锦鸡儿。 10)草原化荒漠,荒漠a:川青锦鸡儿、优若藜、苦艾蒿、无芒隐子草、沙冬青、籽蒿、地白蒿、菭草、齿叶白刺、绵刺、盐角草、多枝柽柳、盐生假木贼。 11)草原化荒漠.荒漠b:蒿叶猪毛菜、短花针茅、芨芨草、灌木亚菊、博乐蒿、小蒿、喀什蒿、南山短花菊、盐爪爪、木本猪毛菜、针茅、细枝盐爪爪。 12)草原化荒漠.荒漠c:白梭梭、白羊草、无叶假木贼。 13)干旱荒漠a:戈壁短花菊、荒漠细柄茅、刺蓬、沙生针茅、多花柽柳、细枝柽柳。 14)干旱荒漠b:梭梭柴、铃铛刺、天山猪毛菜、帕米尔麻黄、座花针茅、旱蒿、克氏狐茅、短叶假木贼、准格尔沙蒿、长穗柽柳、刚毛柽柳。 15)高寒荒漠植被:匍生优若藜。 16)干旱荒漠c:粉花蒿、白杆沙拐枣、膜果麻黄、花花柴、灌木紫菀木、裸果木、合头草、塔里木沙拐枣。 17)超干旱荒漠植被:沙拐枣、胡杨、盐穗木、灰杨、盐节木、圆叶盐爪爪。   综合分类结果表明:多数植物种的生态气候类型与实际生境相符,但也有少数植物种有明显偏差,主要原因有三点:首先,某些种的分布范围超出了西北干旱区,在东北、华北、甚至全国范围内分布,所计算的植物种的气候范围本身存在局限性;其次,西北干旱区的研究资料如植物种的分布范围、分布点的气象资料等有许多缺失:最后,由于文献中对某些植物种分布范围的描述比较笼统,无法确定其精确的地理分布界限,使得植物种所对应的分类结果与其真正所属的植 被类型有一些偏差。   本文还进一步在这128种植物中选取了10种分布明确、资料齐备的代表性植被类型的优势种,根据它们的降水和生物温度指标,模拟预测了它们的可能潜在分布区,包括其主要中心分布区和最大可能分布区,并与实际分布范围进行比较。结果表明.其潜在分布区的分布范围与实际调查所得资料所处范围基本一致,特别是中心分布区的预测图,而最大可能分布区与实际有一定误差。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

气候在大尺度上决定着植被的分布、结构和组成,植被结构和生理状态的改变可以通过改变植被的反射率、粗糙度以及水分通量进而影响气候,这样形成了气候一植被的相互作用。在植被一气候相互作用的研究中,植物功能型是重要的概念和方法,它可以在详尽描述植被生物物理和生理特征的同时,有效削减植被的复杂性。植物功能型的概念和方法已经在植物群落、生态系统的复杂性和功能、古植被和古气候研究,以及陆面过程模型和动态全球植被模型中得到了广泛的应用。但是针对我国植被-气候的相互作用和区域尺度的全球变化研究,还需要一套特定的植物功能型.生物群区体系。   本论文根据我国植被生态学和植被分类的研究背景,结合植被.气候相互作用和区域全球变化研究的需要,提出了一套适宜于中国的植物功能型.生物群区划分方案。首先,根据中国植被和气候特征,筛选并确定了影响植被生物物理和生理属性以及植被分布的6个关键的植物功能特征:然后,根据这6个特征,对植物进行功能型划分,得到了29类植物功能型:再根据我国植被的实际情况和研究需要,选定了其中的18类作为我国的植物功能型。这套功能型包括了7类‘树’功能型,6类‘灌木’功能型和5类‘草’功能型,其中含有4类高寒植物功能型,专门用于描述青藏高原的植被分布,并根据需要设置了2类‘裸地,功能型。   根据我国气候一植被分布定量关系的相关研究以及BIOME1和Box体系的研究结果,选定7个环境变量作为限制我国植物功能型分布的关键气候因子:最冷月平均气温、最暖月平均气温、大于50C的有效生长积温、大于OºC的有效生长积温、Priestley-Taylor系数(实际蒸散与潜在蒸散的比值)、降水量、最暖月和最冷月平均气温之差。采用半峰宽法初步确定每个植物功能型的环境限定因子取值范围。并根据这套植物功能型及其环境参数建立了适宜于我国的生物群区体系,从而得到了我国的植物功能型-生物群区体系(the Chinese Plant functional Types and Biomes,CNPB)。 为了验证这套植物功能型-生物群区体系,将BIOME1和中国的植物功能型生物群区体系(CNPB)对中国植被在当前气候条件和未来气候情景下分布的模拟结果进行了比较。结果表明,这套体系可以更有效地模拟中国植被在当前和未来气候条件下的分布,特别是对青藏高原植被描述的详细程度有实质性的提高。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

植物物候反映的是植物(包括农作物)和环境(气候、水文、土壤条件)的周期性变化之间的相互关系。在气候变化背景下,植物物候已经发生了显著变化,并且对生态系统产生了重要影响。然而,目前的物候研究大多是针对木本植物,对于草本植物的研究则相对缺乏,而且草本植物的物候节律表现出较木本植物更为复杂的特征,不但受温度影响,亦受到水分因素的影响。 本研究利用内蒙古典型草原区克氏针茅草原建群种羊草和克氏针茅自1985~2003年19年的物候资料和气象数据,分析了物候特征及气候因子的变化趋势,探究了两种植物返青期和枯黄期的主导因子。结果表明,克氏针茅草原近20年来的气候发生了显著的变化,总体表现为温度升高、降水量降少、土壤水分含量减少。与以往物候研究结果不同的是,羊草和克氏针茅返青期在气候变暖的背景下却显著滞后。相关分析显示返青前期土壤水分是导致返青滞后的主要原因。对于枯黄期的相关分析同样显示水分因子是制约两种植物生长季结束的关键因子。在检验现有返青期和枯黄期物候模型对于典型草原适用性的基础上,本研究选择应用广泛、计算简便的CTM(Cumulative Temperature Model)模型作为改进返青期物候模型的基础,在其中加入了水分的影响,使得改进返青期物候模型可以很好的模拟典型草原植物返青期,模拟误差小于7天。同时,构建了考虑水分和温度共同影响的枯黄期模型。改进后的物候模型提高了DCTEM(Dynamic Chinese Terrestrial Ecosystems Model)模型的模拟精度。 基于耦合改进物候模块的DCTEM模型对影响生态系统NPP(Net Primary Productivity)、NEP(Net Ecosystem Productivity)和AET(Annual Evapotranspiration)的因子加以分析。结果显示,降水量是影响克氏针茅草原生态系统功能的主要因子,其对于NPP、NEP、AET以及土壤异养呼吸等均有不同程度的影响。其次,生长季长度变化对于克氏针茅生态系统功能呈现出显著的影响作用,其影响程度仅次于降水量。 为了量化在实际的气象条件下单位生长季长度变化所引起生态系统NPP、NEP和AET的变化幅度,设置了三个引起生长季长度变化的物候模拟情景(动态枯黄情景、动态返青情景、动态起止情景)以及对照情景。研究结果显示,不同情景下植物生长季长度变化对于生态系统功能有着不同程度的影响。动态枯黄情景下由于草原枯黄期使整个生长季每延长一天NEP增加3.11%,NPP为0.34%,对于AET的影响最小为0.06%;动态返青情景下,由于草原返青期波动使得整个生长季延长一天则NEP增加1.54%,NPP为0.15%,对于AET的影响最小为0.01%;在动态起止情景下,生长季延长一天则NEP增加3.37%,NPP为0.39%,对于AET的影响最小为0.06%。总体而言,由于枯黄期引起的生长季变化对生态系统功能影响程度比由于返青期引起的程度高。此外,不同的生态系统功能要素对于物候变化的影响程度也有所不同。在几种模拟情景下,NEP受到生长季变化的影响最大,其次为NPP,AET受物候变化影响最小。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在人类活动导致全球变暖的前提下,由于全球气温的升高,地表水分加速向空中蒸发。从20世纪70年代至今,地球上严重干旱地区的面积几乎扩大了一倍。这一增长的一半可归因于气温升高而不是降雨量下降,因为实际上同期全球平均降水量还略有增长。干旱对陆地植物和农林生态系统产生深远影响,并已成为全球变化研究的一个重要方面。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地、人工林下和林窗环境作为目前该区人工造林和森林更新的重要生境,其截然不同的光环境对亚高山针叶林更新和森林动态有非常重要的影响。凋落物产生的化感物质可通过影响种子萌发和早期幼苗的定居而影响种群的建立和更新,而人工林和自然林物种以及更新速度的差异性也都受凋落物的影响。 云杉是川西亚高山针叶林群落的重要树种之一,在维持亚高山森林的景观格局和区域生态安全方面具有十分重要的作用,其自然更新能力及其影响机制一直是研究的热点问题。本试验以云杉种子和2年生幼苗为研究对象,从萌发、根尖形态、幼苗生长、光合作用、渗透调节和抗氧化能力等方面研究了不同光环境下水分亏缺和凋落物水浸液对云杉种子和幼苗生长的影响。旨在从更新的角度探讨亚高山针叶林自然更新的过程,其研究成果可在一定程度上为川西亚高山针叶林更新提供科学依据,同时也可为林业生产管理提供科学指导。主要研究结论如下: 水分亏缺在生长形态、光合作用、抗氧化能力、活性氧化对云杉幼苗都有显著影响。总体表现为,水分亏缺导致了云杉幼苗的高度、地径、单株总生物量降低,增加了地下部分的生长;水分亏缺显著降低了云杉叶片中相对含水量、光合色素、叶氮含量,净光合速率和最大量子产量(Fv/Fm),提高了幼苗叶片中膜脂过氧化产物(MDA)的含量;水分亏缺提高了幼苗叶片中过氧化氢(H2O2)含量,超氧荫离子(O2-)生成速率以及脯氨酸和抗氧化系统的活性(ASA, SOD, CAT, POD, APX和GR)。从这些结果可知,植物在遭受水分亏缺导致的伤害时,其自身会形成防御策略,并通过改变形态和生理方面的特性以减轻害。但是,这种自我保护机制依然不能抵抗严重水分亏缺对植物的伤害。 模拟林下低光照条件显著增加单株植物的地上部分生长,尤其是其叶片的比叶面积(叶面积/叶干重),同时其光合色素含量和叶片相对含水量也显著增加,这些改变直接导致植株光合速率和生物量的增加。同时,与高光照水平相比,低光照幼苗的膜脂过氧化产物(MDA)和活性氧物质均较低,显示出低光照比高光照水平对植物的更低的氧化伤害。尽管低光照也导致大部分抗氧化酶活性降低,但这正显示出植物遭受低的氧化伤害,更印证了前面的结论。 凋落物水浸液影响了云杉种子的萌发和根系的生长,更在形态、光合作用、抗氧化能力、活性氧物质以及叶氮水平上显著影响了云杉幼苗,其中,以人工纯林凋落物的影响更有强烈。具体表现在,种子萌发速率和萌发种子幼根的长度表现为对照>自然林处理>人工纯林;凋落物水浸液抑制种子分生区和伸长区的生长,人工林处理更降低了根毛区的生长,使根吸水分和养分困难。对2年生幼苗的影响主要表现在叶绿素含量、光合速率以及叶氮含量的降低;膜脂过氧化产物、活性氧物质和抗氧化酶系统的显著增加。同样的,人工纯林处理对云杉幼苗的影响显著于自然林处理。 在自然生态系统中,由于全球变暖气温升高导致的水分亏缺和森林凋落物都存在森林的砍伐迹地,林窗和林下环境中。我们的研究表明,与迹地或林窗强光照比较,林下的低光照环境由于为植物的生长营造了较为湿润的微环境,因此水分亏缺在林下对云杉幼苗造成的影响微弱。这可以从植物的形态、光合速率以及生物量积累,过氧化伤害和抗氧化酶系统表现出来。另一方面,凋落物水浸液在模拟林下低光照环境对植物的伤害也微弱于强光照环境,这与强光照环境高的水分散失导致环境水分亏缺有关;而人工纯林处理对云杉幼苗的伤害比对照和自然林处理显示出强烈的抑制作用。 Under the pre-condition of global warming resulted from intensive human activities, water in the earth’s surface rapidly evaporates due to the increase of global air temperature. From 1970s up to now, the area of serious drought in the world is almost twice as ever. This increase might be due to the increasing air temperature and not decreasing rainfall because global average rainfall in the corresponding period slightly is incremental. Drought will have profound impacts on terrestrial and agriculture-forest system and has also become the important issue of global change research. The subalpine coniferous forests in the eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying the effects of global warming on terrestrial ecosystems. The light environment significantly differs among cutting blanks, forest gap and understory, which is particularly important for plant regeneration and forest dynamics in the subalpine coniferous forests. Picea asperata is one of the keystone species of subalpine coniferouis forests in western China, and it is very important in preserving landscape structure and regional ecological security of subalpine forests. The natural regeneration capacities and influence mechanism of Picea asperata are always the hot topics. In the present study, the short-term effects of two light levels (100% of full sunlight and 15% of full sunlight), two watering regimes (100% of field capacity and 30% of field capacity), two litter aqueous extracts (primitive forest and plantation aqueous extracts) on the seed germination, early growth and physiological traits of Picea asperata were determined in the laboratory and natural greenhouse. The present study was undertaken so as to give a better understanding of the regeneration progress affected by water deficit, low light and litter aqueous extracts. Our results could provide insights into the effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientific direction for the forest production and management. Water deficit had significant effects on growth, morphological, physiological and biochemical traits of Picea asperata seedlings. Water deficit resulted in the decrease in height, basal diameter, total biomass and increase in under-ground development; water deficit significantly reduced the needle relative water content, photosynthetic pigments, needle nitrogen concentration, net photosynthetic rate and the maximum potential quantum yield of photosynthesis (Fv/Fm), and increased the degree of lipid peroxidation (MDA) in Picea asperata seedlings; water deficit also increased the rate of superoxide radical (O2-) production, hydrogen peroxide (H2O2) content, free proline content and the activities of antioxidant systems (ASA, SOD, POD, CAT, APX and GR) in Picea asperata seedlings. These results indicated that some protective mechanism was formed when plants suffered from drought stress, but the protection could not counteract the harm resulting from the serious drought stress on them. Low light in the understory significantly increased seedling above-ground development, especially the species leaf area (SLA), and photosynthetic pigments and relative needle content. These changes resulted in the increase in net photosynthetic rate and total biomass. Moreover, the lower MDA content and active oxygen species (AOS) (H2O2 and O2-) in low light seedlings suggested that low light had weaker oxidative damage as compared to high light. Lower antioxidant enzymes activities in low light seedlings indicated the weaker oxidative damage on Picea asperata seedlings than high light seedlings, which was correlative with the changes in MDA and AOS. Litter aqueous extracts affected seed germination and root system of Picea asperata seedlings. Significant changes in growth, photosynthesis, antioxidant activities, active oxygen species and leaf nitrogen concentration were also found in Picea asperata seedlings, and plantation treatment showed the stronger effects on these traits than those in control and primitive forest treatment. The present results indicated that seed germination and radicle length parameters in control were superior to those in primitive forest treatment, and those of primitive forest treatment were superior to plantation treatment; litter aqueous extracts inhibited the meristematic and elongation zone, and plantation treatment caused a decrease in root hairs so as to be difficult in absorbing water and nutrient in root system. On the other hand, litter aqueous extracts significantly decreased chlorophyll content, net photosynthetic rate and leaf nitrogen concentration of Picea asperata seedlings; MDA, AOS and antioxidant system activities were significantly increased in Picea asperata seedlings. Similarly, plantation treatment had more significant effect on Picea asperata seedlings as compared to primitive forest treatment. In the nature ecosystem, water deficit resulted from elevating air temperature and litter aqueous extract may probably coexist in the cutting blank, forest gap and understory. Our present study showed that water deficit had weaker effects on low light seedlings in the understory as compared to high light seedlings in the cutting blank and forest gap. The fact was confirmed from seedlings growth, gas exchange and biomass accumulation, peroxidation and antioxidant systems. This might be due to that low light-reduced leaf and air temperatures, vapour-pressure deficit, and the oxidative stresses can aggravate the impact of drought under higher light. On the other hand, litter aqueous extracts in the low light had weaker effects on the Picea asperata seedlings than those at high light level, which might be correlative to the water evapotranspiration under high light. Moreover, plantation litter aqueous extracts showed stronger inhibition for seed germination and seedling growth than control and primitive forest treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20 世纪升高了0.6 ¡æ,并预测在本世纪将上升1.4-5.8 ¡æ。气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地和人工云杉林下作为目前该区人工造林和森林更新的两种重要生境,二者截然不同的光环境对亚高山针叶林不同物种更新及森林动态有非常重要的影响。 本文以青藏高原东部亚高山针叶林几种主要森林树种为研究对象,采用开顶式增温法(OTCs)模拟气候变暖来研究增温对生长在两种不同光环境下(全光条件和林下低光环境)的几种幼苗早期生长和生理的影响,旨在从更新角度探讨亚高山针叶林生态系统不同树种对气候变暖在形态或生理上的响应差异,其研究结果可在一定程度上为预测气候变暖对亚高山针叶林物种组成和演替动态提供科学依据,同时也可为未来林业生产管理者提供科学指导。 1、与框外对照相比,OTCs 框内微环境发生了一些变化。OTCs 框内与框外对照气温年平均值分别为5.72 ¡æ和5.21 ¡æ,而地表温度年平均值分别为5.34 ¡æ和5.04 ¡æ,OTCs 使气温和地表年平均温度分别提高了0.51 ¡æ和0.34 ¡æ;OTCs框内空气湿度年平均值约高于框外对照,二者分别为90.4 %和85.3 %。 2、增温促进了三种幼苗生长和生物量的积累,但增温效果与幼苗种类及所处的光环境有关。无论在全光或林下低光条件下,增温条件下云杉幼苗株高、地径、分支数、总生物量及组分生物量(根、茎、叶重)都显著地增加;增温仅在全光条件下使红桦幼苗株高、地径、总生物量及组分生物量(根、茎、叶重)等参数显著地增加,而在林下低光条件下增温对幼苗生长和生物量积累的影响效果不明显;冷杉幼苗生长对增温的响应则与红桦幼苗相反,增温仅在林下低光条件下对冷杉幼苗生长和形态的影响才有明显的促进作用。 增温对三种幼苗的生物量分配模式产生了不同的影响,并且这种影响也与幼苗所处的光环境有关。无论在全光或林下低光环境下,增温都促使云杉幼苗将更多的生物量分配到植物地下部分,从而导致幼苗在增温条件下有更高的R/S 比;增温仅在林下低光条件下促使冷杉幼苗将更多的生物量投入到植物叶部,从而使幼苗R/S 比显著地降低;增温在全光条件下对红桦幼苗生物量分配的影响趋势与冷杉幼苗在低光条件下相似,即增温在全光条件下促使红桦幼苗分配更多的生物量到植物同化部分—叶部。 3、增温对亚高山针叶林生态系统中三种幼苗气体交换和生理表现的影响总体表现为正效应(Positive),即增温促进了几种幼苗的生理活动及其表现:(i)无论在全光或林下低光环境下,增温使三种幼苗的光合色素含量都有所增加;(ii)增温在一定程度上提高了三种使幼苗的PSII 光系统效率(Fv/Fm),从而使幼苗具有更强的光合电子传递活性;增温在一定程度使三种幼苗潜在的热耗散能力(NPQ)都有所增强,从而提高幼苗防御光氧化的能力;(iii)从研究结果来看,增温通过增加光合色素含量和表观量子效率等参数而促进幼苗的光合作用过程。总体来说增温对幼苗生理过程的影响效果与幼苗种类及所处的光环境有关,增温仅在全光条件下对红桦幼苗光合过程的影响才有明显的效果,而冷杉幼苗则相反,增温仅在低光条件下才对幼苗的生理过程有显著的影响。 4、增温对三种幼苗的抗氧化酶系统产生了一定的影响。从总体来说,增温使几种幼苗活性氧含量及膜脂过氧化作用降低,从而在一定程度上减轻了该区低温对植物生长的消极影响;增温倾向表明使三种幼苗体内抗氧化酶活性和非酶促作用有所提高,从而有利于维持活性氧代谢平衡。但增温影响效果与幼苗种类所处的光环境及抗氧化酶种类有关,增温对冷杉幼苗抗氧化酶活性的影响仅在林下低光环境下效果明显,而对红桦幼苗抗氧化酶活性的影响仅在全光条件下才有明显的效果。 总之,增温促进了亚高山针叶林生态系统中三种幼苗的生长和生理表现,但幼苗生长和生理对增温的响应随植物种类及所处的光环境不同而变化,这种响应差可能异赋予了不同植物种类在未来气候变暖背景下面对不同环境条件时具有不同的适应力和竞争优势,从而对亚高山针叶林生态系统物种组成和森林动态产生潜在的影响。 Enrichment of atmospheric greenhouse gases resulted from human activities suchas fossil fuel burning and deforestation has increased global mean temperature by 0.6¡æ in the 20th century and is predicted to increase it by 1.4-5.8 ¡æ. The globalwarming will have profound, long-term impacts on terrestrial plants and ecosystems.The ecoologcial consequences arising from global warming have also become thevery important issuses of global change research. The subalpine coniferous forests inthe eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying theeffects of climate warming on terrestrial ecosystems. The light environment differssignificantly between clear-outs and spruce plantations, which is particularlyimportant for plant regeneration and forest dynamics in the subalpine coniferous forests. In this paper, the short-term effects of two levels of air temperature (ambient andwarmed) and light (full light and ca. 10% of full light regimes) on the early growthand physiology of Picea asperata, Abies faxoniana and Betula albo-sinensis seedlingswas determined using open-top chambers (OTCs). The aim of the present study wasto understand the differences between tree species in their responses to experimentalwarming from the perspective of regeneration. Our results could provide insights intothe effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientificdirection for the production and management under future climate change. 1. The OTCs manipulation slightly altered thermal conditions during the growingseason compared with the outside chambers. The annual mean air temperature andsoil surface temperature was 5.72 and 5.34 ¡æ (within the chambers), and 5.21 and5.04 ¡æ (outside the chambers), respectively. The OTCs manipulation increased airtemperature and soil surface temperature by 0.51 and 0.34 ¡æ on average, respectively.Air relative humidity was slightly higher inside the OTCs compared with the controlplots, with 90.4 and 85.3 %, respectively. 2. Warming generally stimulated the growth and biomass accumulation of thethree tree species, but the effects of warming on growth and development variedbetween light conditions and species. Irrespective of light regimes, warmingsignificantly increased plant height, root collar diameter, total biomass, componentbiomass (stem, foliar and root biomass) and the number of branches in P. asperataseedlings; For A. faxoniana seedlings, significant effects of warming on all the tested parameters (plant height, root collar diameter, total biomass, and component biomass) were found only under low light conditions; In contrast, the growth responses of B.albo-sinensis seedlings to warming were found only under full light conditions. Warming had pronounced effects on the pattern of carbon allocation. Irrespectiveof light regimes, the P. asperata seedlings allocated relatively more biomass to rootsin responses to warming, which led to a higher R/S. Significant effects of warming onbiomass allocation were only found for the A. faxoniana seedlings grown under lowlight conditions, with significantly increased in leaf mass ratio (LMR) and decreasedin R/S in responses to warming manipulation. The carbon allocation responses of B.albo-sinensis seedling to warming under full light conditions were similar with theresponse of A. faxoniana seedlings grown under low light conditions. Warmingsignificantly decreased root mass ratio (RMR), and increased leaf mass ratio (LMR)and shoot/root biomass ratio (S/R) for the B. albo-sinensis seedlings grown under full light conditions. 3. Warming generally had a beneficial effect on physiological processes of dominant tree species in subalpine coniferous forest ecosystems: (i) Warming markedincreased the concentrations of photosynthetic pigments in both tree species, but theeffects of warming on photosynthetic pigments were greater under low lightconditions than under full light conditions for the two conifers; (ii) Warming tended toenhance the efficiency of PSII in terms of increase in Fv/Fm, which was related tohigher chloroplast electron transport activity; and enhance non-radiative energydissipation in terms of in increase in NPQ, which may reflect an increased capacity inpreventing photooxidation; (iii) Warming may enhance photosynthesis and advancephysiological activity in plants by increasing photosynthetic pigment concentration,the efficiency of PSII and apparent quantum yield (Φ) etc. From the results, theeffects of warming on seedlings’ physiological performance varied between lightenvironment and species. The effects of warming on photosynthesis performance of B.albo-sinesis seedlings were pronounced only under full light conditions, while thephysiological responses of A. faxoniana seedlings to warming were found only underthe 60-year plantation. These results provided further support for the observationsabove on growth responses of seedlings to warming. 4. Warming had marked effects on antioxidative systems of the three seedlings.Warming generally decreased H2O2 accumulation and the rate of O2- production, andalleviated degree of lipid peroxidation in terms of decreased MDA content, whichalleviated to some extent the negative effects of low temperature on the plant growthand development in this region; Warming tended to increase the activities ofantioxidative enzymes and stimulate the role of non-enzymatic AOS scavenging,which helped to create an balance in maintaining AOS metabolites for the threeseedlings. Nevertheless, the effects of warming on antioxidative defense systems werepronounced only under the 60-year plantation for the A. faxoniana seedlings. Incontrast, the marked effects of warming on antioxidative defense systems for the B.albo-sinesis seedlings were found only under the full light conditions. In sum, warming is considered to be generally positive in terms of growth andphysiological process. However, the responses of growth and physiology performanceto warming manipulation varied between species and light regimes. Competitive and adaptive relationships between tree species may be altered as a result of responsedifferences to warming manipulation, which is one mechanism by which globalwarming will alter species composition and forest dynamics of subalpine coniferousforest ecosystems under future climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

除植被冠层的光合作用之外,土壤的呼吸作用是陆地生态系统碳收支中最大的通量。土壤呼吸即使发生较小的变化也能显著地减缓或加剧大气中CO2浓度的增加,从而明显影响到全球气候变化。土壤呼吸速率变化与否以及变化的方向可以反映生态系统对环境变化的敏感程度和响应模式。尽管如此,土壤呼吸仍是一个为人们了解不多的生态系统过程。 草地生态系统是陆地生态系统的一个重要组成部分。针对草地土壤呼吸进行野外实验研究和相应方法论的探讨将对区域乃至全球碳源汇性质的准确估算具有重要的科学意义。然而,近几年来关于草地土壤呼吸的主要研究工作都集中在温带草原和部分热带草原,而针对高寒草甸生态系统土壤呼吸的研究报道还很少。 2008年4月至2009年4月期间,我分别在2008年6、8、10、12月和2009年2月和4月分6次对川西北的典型高寒草甸群落的土壤呼吸进行观测,分析了不同类型高寒草甸群落土壤呼吸的季节变化特征以及环境因子和放牧模式对其影响。主要研究结果如下: 1)该地区高寒草甸生态系统在生长季(6月~8月)土壤呼吸速率较大(6.07~9.30μmolCO2¡m-2¡s-1 ) , 在非生长季( 12 月~ 2 月) 较小( 0.16 ~0.49μmolCO2¡m-2¡s-1 ) 。土壤CO2 年累积最大释放量为3963 ~ 5730gCO2¡m-2¡yr-1,其中,生长季土壤CO2的释放量占年总释放量的85%~90%。非生长季占10%~15%。非生长季所占比例略小于冬季积雪覆盖地区的冬季土壤呼吸占年土壤呼吸量的比例(14%~30%)。温度,尤其地温,是影响该地区高寒草甸生态系统土壤呼吸速率的最主要环境因子。土壤呼吸速率与地上生物量和土壤水分之间没有显著相关性,但是土壤含水量过大会导致土壤呼吸速率下降。 2)在观测期内,草丘区的土壤呼吸显著高于对照区的土壤呼吸,其最大土壤呼吸速率为16.77μmolCO2¡m-2¡s-1,土壤CO2 年累积最大释放量为8145gCO2¡m-2¡yr-1,是对照区的近2 倍。由于草丘在高寒草甸中占有较大的面积比例(近30%),因此,它将对高寒草甸生态系统的碳循环起着重要的作用。 3)放牧模式不仅可以影响高寒草甸群落的土壤CO2 排放,而且还可以改变土壤呼吸的温度敏感性(Q10)。本研究表明,在生长季有长期放牧活动干扰时将会增加土壤向大气中释放二氧化碳的速度,促使土壤碳库中碳的流失。禁牧样地的土壤呼吸速率在刚禁牧时先迅速增大,随着禁牧时间的延长土壤呼吸速率将会下降。此外,与其它放牧模式相比,冬季放牧将高寒草甸群落土壤呼吸速率在生长季达到最大值的时间明显向后推迟。不同放牧模式下高寒草甸群落土壤呼吸的Q10 值大小顺序为:禁牧一年群落>冬季放牧群落>禁牧三年群落>夏季放牧群落>自由放牧群落。 4)基于呼吸室技术的观测方法中,测量前的剪草处理可以明显改变该地区高寒草甸群落的土壤温度和土壤呼吸速率。在生长季,剪草处理将使土壤呼吸速率的瞬时响应增加90%左右。由于剪草处理明显增加了剪草样方白天的土壤温度,而土壤温度与土壤呼吸之间存在着极显著的指数相关关系,因而剪草处理导致土壤呼吸速率迅速增加。因此,在高寒地区基于呼吸室技术观测的土壤呼吸应当进行校正。 综上所述,川西北高寒草甸生态系统土壤呼吸速率在生长季较高,而在非生长季较低。土壤温度是影响该地区土壤呼吸的最主要环境因子。在实验观测期,草丘区土壤呼吸速率显著高于对照区的,是对照区土壤呼吸速率的近2倍。由于测量前的剪草处理可以明显改变待测点的土壤呼吸速率,因此,应对在高寒地区基于呼吸室技术观测的土壤呼吸进行校正。 Soil respiration is the second largest component (less than plant phtotosynthesis) of carbon dioxide flux between terrestrial ecosystems and the atmosphere. A minor change in soil respiration rate can significantly slow down or accelerate the increase of atmospheric CO2 concentration that is closely related to global climatic change. In turn, the change in the flux direction and rate of soil respiration may indicate the elasticity and stability of ecosystems to global changes and human disturbance. However, soil respiration is still an ecosystem process that has been poorly understood. Grassland ecosystem is an important component of the terrestrial ecosystem. Accurately estimating the CO2 flux from soil to atmosphere in situ is the key to evaluating the carbon resource and sink regionally or globally. Despite of extensive studies on the temperate and tropic grasslands, the soil respiration of alpine meadows has not substantially been measured. In the current study, soil respiration was measured for an annual cycle from April, 2008 to April, 2009 for the alpine meadow in northwestern Sichuan Province of China to determine the seasonal variation of soil respiration for the typical plant communities. The results are shown as follows: 1) Large seasonal variation of soil respiration was observed in the alpine meadow. The rate of soil respiration was the greatest (6.07~9.30μmolCO2¡m-2¡s-1) in June and the smallest (0.16 ~ 0.49μmolCO2¡m-2¡s-1) occurred from December to February in the non-growing season. The total emission of soil CO2 was estimated as 3963~5730 gCO2¡m-2¡yr-1, 85%~90% of which was released during the growing season, and 10%~15% during the non-growing season which was slightly less than the ratio of winter and annual CO2 flux from soil. Temperature, particularly the soil temperature, was the major environmental factor regulating the soil respiration. Significant and positive relationships were not found between soil respiration and soil moisture and between soil respiration and plant above-ground biomass, but excessive soil water content would decrease in the rate of soil respiration. 2) The rate of soil respiration in grass hummock communities was up to 16.77μmolCO2¡m-2¡s-1, which was about twice as great as in the controls (communities located in low and even sites). Considering the large proportion (about 30% on average) of hummock area in the meadow, it can be concluded that the hummocks played an important role in the carbon cycling of the study ecosystem. 3) Grazing patterns affected the flux of CO2 emission and the temperature sensitivity of soil respiration (Q10) in the alpine meadow. Grazing during growing season increased the rate of soil respiration. The rate of soil respiration increased significantly immediately after the alpine meadow being fenced, but thereafter decreased. In addition, grazing in winter delayed the peak respiration rate relative to the non-grazing mode. The Q10 value was the largest in the non-grazed area for one year, and next came the area with grazing in winter, followed by the non-grazed area for three years, the area with grazing in summer, and the non-limited grazed area. 4) In the chamber-based techniques, clipping manipulation before each measurement increased the transient rate of soil respiration by about 90% in the summer of the alpine meadow. As increase in soil temperature at daytime in the clipped plots by clipping and the exponential relationship between soil respiration and temperature, clipping manipulation led to increase in the rate of soil respiration. This suggested that a correction should be done for the techniques if employed in alpine and cold regions. In summary, the rate of soil respiration in the alpine meadow was the greatest in June and the smallest occurred from ecember to February in the non-growing season. Soil temperature was the major environmental factor regulating the soil respiration. The rate of soil respiration in grass hummock communities was up to 16.77μmolCO2¡m-2¡s-1, which was about twice as great as in the controls. A correction should be done for the techniques if employed in alpine and cold regions, because of the effect of clipping manipulation on soil temperature and respiration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

人类活动引起全球大气中温室气体(CO2、CH4、NOx)浓度不断增加,致使地球表面温度在过去的100 年中已经增长了0.74 ± 0.18℃,预计到本世纪末将会增加1.1-6.4℃。此外,氮沉降也是当今社会的重要环境问题,随着经济发展的全球化, 高氮沉降也呈现出全球化趋势。全球气候变暖和氮沉降给陆地生态系统的地上、地下生物学和生物地球化学过程所带来巨大影响越来越引起人们的关注。 本文以川西亚高山针叶林的两个重要树种云杉和油松幼苗为研究对象,采用红外辐射增温(空气增温2.1℃,土壤增温2.6℃)和根部施氮(施氮量25 g N m-2yr-1)的方法,从生长形态、光合作用、抗氧化能力和矿质营养等方面研究这两种幼苗对气候变暖和氮沉降的响应。该实验为室外控制实验,包括四个处理:(1)不增温+不施氮(UU);(2) 不增温+施氮(UF);(3) 增温+不施氮(WU);(4) 增温+施氮(WF)。本研究旨在从生理生化、物质代谢 、生长及形态等不同水平上研究模拟增温和施氮对两种树苗的联合效应,提高我们对全球变化下亚高山针叶林早期更新过程的理解,同时也为森林管理提供科学依据。具体研究结果如下: 单独增温处理显著提高了云杉和油松幼苗的地茎、叶重、茎重、根重以及总生物量;单独施氮处理也增加了两种幼苗的株高和总生物量。而增温和施氮联合作用对两种幼苗生长的影响并不相同,联合作用对云杉幼苗生长指标的正效应显著低于单独施氮处理,但是联合作用比单独增温或施氮更大程度的促进了油松幼苗生物量的积累。 单独增温和施氮都有利于提高云杉和油松叶片中叶绿素含量、净光合速率(A)、最大净光合速率(Amax)、表观量子效率(Φ)、最大光能转化效率(Fv/Fm)和量子产量(Y)。与对两种幼苗生长指标的影响相似,加氮和增温共同作用下油松幼苗的以上光合指标比在单独增温或施氮处理下有更大程度的提高;而联合作用下云杉幼苗叶绿素含量、净光合速率、最大净光合速率、表观量子效率、最大光能转化效率以及量子产量比单独施氮处理明显地降低。 增温和施氮都显著地降低了云杉和油松幼苗针叶组织中活性氧和丙二醛的积累。交互作用降低了云杉幼苗叶片的抗氧化酶活性、脯氨酸和ASA 的含量,却显著提高了油松幼苗SOD、POD、APX 等抗氧化酶的活性,并且对油松幼苗脯氨酸和ASA 积累的促进作用比单一因子更加明显。因此,增温和施氮共同作用下油松幼苗叶片中O2-产生速率、H2O2 及MDA 含量明显降低,而云杉叶片中只有O2-产生速率出现降低趋势。 增温和施氮都降低了云杉体内的P、Ca、Mg 元素的含量,增加了Cu、Zn、Mn 在各器官内的积累。对油松幼苗而言,增温和加氮单独作用也显著降低了Ca 含量增加了Cu、Zn、Mn 的积累,但是不同于云杉幼苗的是P、Mg 也显著增加。增温和施氮联合作用对云杉幼苗体内元素的影响与单一施氮处理或增温处理相似,不同的是比单一因子作用更为明显降低了P、Ca、Mg 含量,增加了植株中N、Cu、Zn、Mn 的含量,但是油松矿质元素含量在联合作用下并没有产生类似于云杉幼苗的双因子叠加效应。 总之,尽管单独增温或者施氮都有利于云杉和油松幼苗生长指标、光合能力以及抗氧化能力的提高。但是,增温和施氮对云杉幼苗生长生理的促进效应非但没有在交互作用下有更大的提高,反而低于单独氮处理。与此不同的是,增温和施氮联合作用比单因子作用更有利于油松幼苗生长及生理指标的提高。 With the continued increase in atmospheric concentrations of greenhouse gases (CO2、CH4、NOx), the mean global surface temperature has increased by about 0.74 ± 0.18℃ over the past century and is predicted to rise by as much as 6.4℃ during this century. Besides global warming, nitrogen deposition is another serious environmental problem caused by human activities, and high nitrogen load has become globalization as a result of global economy development. Global climate warming and nitrogen deposition have induced dramatic alternations in above - and below- ground biology and biogeochemistry process in terrestrial ecosystems, and more and more attention has been invited to those problems. This experiment mainly studies two important species Picea asperata and Pinus tabulaeformis in subalpine coniferous forest of western Sichuan, China. Infared heaters are induced to increase both air and soil temperature by 2.1℃ and 2.6 ℃, respectively. Ammonium nitrate solution (for a total equivalent to 25 g N m-2 year-1) is added to soil surface. There are four treatments in this study: (1) unwarmed unfertilized (UU); (2) unwarmed fertilized (UF); (3) warmed unfertilized (WU); (4) warmed fertilized (WF). This study is conducted to determine the influences of experimental warming and nitrogen fertilization on physiolchemistry, nutrition metabolism, growth and morphology in the two coniferous species seedlings. The current study is favorable for increasing our understanding on the early phase of regeneration behavior in subalpine coniferous forest, and it also provide scientific direction for forest management under future global changes. The results are as follows: Artificial warming alone significantly increased basal diameter, leaf mass, stem mass, root mass and total biomass for Picea asperata and Pinus tabulaeformis seedlings, and single nitrogen fertilization are also favorable for growth of the two species and stimulate plant hight and total biomass. The two species seedlings respond differently to the combination of elevated temperature and nitrogen addition. Warming combined with nitrogen fertilization weakens the positive effects of nitrogen addition for growth of Picea asperata seedlings. However, the combination of elevated temperature and nitrogen fertilization further increase biomass accumulation of Pinus tabulaeformis seedlings. Both elevated temperature alone and nitrogen fertilization alone can increase photosynthetic pigments contents, net photosynthetic rate (A), maximum net photosynthetic rate (Amax), apparent quantity yield (Φ), maximum photochemical efficiency of photosystem II (Fv/Fm) and effective quantum yield (Y). Similarly with growth parameters, the combination of warming and nitrogen addition induced more increment of these above photosynthetic parameters for Pinus tabulaeformis seedlings. However, these photosynthetic parameters of Picea asperata seedlings under the combination of warming and nitrogen addition are lower than those under nitrogen fertilization alone. The levels of active oxygen species (AOS) and malodiadehyde (MDA) in needles of the two coniferous species seedling are obviously decreased by experimental warming or additional nitrogen. Warming combined with nitrogen fertilizer reduces the activities of SOD, CAT and APX, and the contents of proline and ASA of Picea asperata seedlings, but the combination significantly increases activities of these antioxidant enzymes in needlels of Pinus tabulaeformis seedlings and further improves the accumulation of proline and ASA compared to either artificial warming or nitrogen addition. Therefore, the rate of O2 - production, the contents of H2O2 and MDA in needles of Pinus tabulaeformis seedlings are remarkably reduced by the combination of warming and nitrogen addition, but the combination only significantly decreased the rate of O2 - production of Picea asperata seedlings. Elevated temperature or nitrogen fertilization decrease the contents of P, Ca, Mg but increase Cu, Zn, Mn contents for Picea asperata seedlings. For Pinus tabulaeformis seedlings, elevated temperature alone and nitrogen fertilization alone decreased Ca, but increased P, Mg, Cu, Zn, Mn contents. The effects of the combination of warming and nitrogen addition on these element contents in needles of Picea asperata seedlings are added or multiplied the effects of warming and nitrogen addition alone, resulting in less contens of P, Ca, Mg and more contents of Cu, Zn, Mn than either elevated temperature or nitrogen fertilization. Howere, these adding or multipluing single-factor effects on contents of these elements are not observed in the case of Pinus tabulaeformis seedlings. In conclusion, growth parameters, photosynthetic capacities and antioxidant abilities of Picea tasperata and Pinus abulaeformis seedlings are improved by experimental warming or nitrogen fertilization. Interestingly, the positive effects of warming and nitrogen addition on growth and physiological performances are not multiplied by the combination of elevated temperature and nitrogen fertilization, even dempened for Picea asperata seedlings. However, for Pinus tabulaeformis seedlings, growth and physiological performances are further improved by the combination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

21世纪,中国的人口和经济的持续增长面临着资源短缺和生态脆弱的限制。提高资源利用效率和消减资源利用引起的环境影响是学术界和决策者面临的新课题。本文从资源流动的视角研究资源利用过程及其引起的环境影响。我们把资源流动过程分解为开采、加工、转化、消费等几个关键环节,评价其资源利用效率和环境影响,并寻求改善的途径。因其资源消耗量大、生态环境影响严重,我们选取了林木、煤炭及石油研究其资源与产品流动及其环境影响。林木产品的产量、进出口量和消费量数据来自中国森林统计年鉴(1949-2001)。煤炭、石油的开采量、进出口

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Science & Technology Basic Work Program of China: Scientific Survey of the Middle-lower Reaches of Lantsang River and the Great Shangri-La Region [2008FY110300]; National Basic Research Program of China (973 Program): Ecosystem Services and Ecological Safety of the Major Terrestrial Ecosystems of China [2009CB421106]; National Natural Science Foundation of China [30670374]; EU ; European Commission, DG Research [003874]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrogen addition to soil can play a vital role in influencing the losses of soil carbon by respiration in N-deficient terrestrial ecosystems. The aim of this study was to clarify the effects of different levels of nitrogen fertilization (HN, 200 kg N ha(-1) year(-1); MN, 100 kg N ha(-1) year(-1); LN, 50 kg N ha(-1) year(-1)) on soil respiration compared with non-fertilization (CK, 0 kg N ha(-1) year(-1)), from July 2007 to September 2008, in temperate grassland in Inner Mongolia, China. Results showed that N fertilization did not change the seasonal patterns of soil respiration, which were mainly controlled by soil heat-water conditions. However, N fertilization could change the relationships between soil respiration and soil temperature, and water regimes. Soil respiration dependence on soil moisture was increased by N fertilization, and the soil temperature sensitivity was similar in the treatments of HN, LN, and CK treatments (Q (10) varied within 1.70-1.74) but was slightly reduced in MN treatment (Q (10) = 1.63). N fertilization increased soil CO2 emission in the order MN > HN > LN compared with the CK treatment. The positive effects reached a significant level for HN and MN (P < 0.05) and reached a marginally significant level for LN (P = 0.059 < 0.1) based on the cumulative soil respiration during the 2007 growing season after fertilization (July-September 2007). Furthermore, the differences between the three fertilization treatments and CK reached the very significant level of 0.01 on the basis of the data during the first entire year after fertilization (July 2007-June 2008). The annual total soil respiration was 53, 57, and 24% higher than in the CK plots (465 g m(-2) year(-1)). However, the positive effects did not reach the significant level for any treatment in the 2008 growing season after the second year fertilization (July-September 2008, P > 0.05). The pairwise differences between the three N-level treatments were not significant in either year (P > 0.05).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stable carbon and nitrogen isotope ratios of single tissues or whole bodies were analyzed to establish trophic positions of main consumers living at the alpine meadow ecosystem in the Tibetan Plateau. The results demonstrated that delta C-13 and delta N-15 values of vertebrates showed great variations and ranged from -26.83 to -22.51 parts per thousand and from 2.33 to 8.44 parts per thousand, respectively. Plateau pika, root vole, plateau hare, infants of rodents and hatchlings of passerine bird species had the lowest delta C-13 and delta N-15 values. delta C-13 and delta N-15 values of omnivorous and insectivorous birds and amphibians showed intermediate. Carnivorous species, steppe polecat and Upland buzzard, and omnivorous Robin accentor and White wagtail possessed extremely higher VC and delta N-15 values. Omnivorous birds captured in earlier year had significantly less negative delta C-13 and greater delta N-15 values than those captured later. Based on steady angular enrichment between trophic levels, an "alpha and vector model" combing delta C-13 and delta N-15 values was introduced to reveal trophic positions, the results indicated that Tibetan sheep, Tibetan yak, plateau pika, root vole, plateau hare, infants of small rodents showed the lowest trophic positions (TP 1.81-2.38). While omnivorous and insectivorous birds, their hatchlings and amphibians showed intermediate trophic positions (TP 2.06-2.89), carnivorous species steppe polecat and Upland buzzard, migrant birds possessed extremely higher trophic positions (TP 2.89-3.05). The isotopic investigation of organisms and the introduced "alpha and vector model" successfully demonstrated the same trophic positions and diet prediction of consumers as nitrogen enrichment model at the alpine meadow ecosystem. Besides of this information, the "alpha and vector model" can also be incorporated into multiple isotope signatures to infer trophic relationships. This angular enrichment model has the potential to address basic ecological questions, such as trophic structure, trophic dynamics, and energy flow in other terrestrial ecosystems of properly handled. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrogen deposition experiments were carried out in alpine meadow ecosystems in Qinghai-Xizang Plateau in China, in order to explore the contribution of nitrogen deposition to carbon sequestration in alpine meadows. Two methods were used in this respect. First, we used the allocation of N-15 tracer to soil and plant pools. Second, we used increased root biomass observed in the nitrogen-amended plots. Calculating enhanced carbon storage, we considered the net soil CO2 emissions exposed to nitrogen deposition in alpine meadows. Our results show that nitrogen deposition can enhance the net soil CO2 emissions, and thus offset part of carbon uptake by vegetation and soils. It means that we have to be cautious to draw a conclusion when we estimate the contribution of nitrogen deposition to carbon sequestration based on the partitioning of N-15 tracer in terrestrial ecosystems, in particular in N-limited ecosystems. Even if we assess the contribution of nitrogen deposition to carbon sequestration based on increased biomass exposed to nitrogen deposition in terrestrial ecosystems, likewise, we have to consider the effects of nitrogen deposition on the soil CO2 emissions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scientists have paid much attention to the greenhouse effects and the greenhouse gases for the fact of global warming. There are many uncertainties in the prediction of future climatic change. One of the important reasons causing the uncertainties is insufficient researches of the sources and sinks of greenhouse gases, especially, there is a missing sink in the global carbon cycle. The recent researches proposal that there may be an important carbon sink in the middle-latitude terrestrial ecosystems (vegetation and soil) in the North Hemisphere, despite that there is much disputation about its position and amplitude. Chinese loess is located in the middle latitude area in the North Hemisphere, what kind of role does it play in and how does it influence on the balance of the global greenhouse gases budget? For this reason, many samples were taken and analyzed from wide range and multi-stratum of Chinese loess to understand characteristics of major greenhouse gases in loess and loess possible effect on global greenhouse gas budget. Using self-made spiral corer, we totally took 81 gas samples and 65 soil samples from 7 loess profiles in China such as Zhaitang loess section of Beijing, Pianguan, Xingxian, Lishi, Puxian, Jishan loess section of Shanxi Province, and Luochuan loess section of Shaanxi Province. The gas concentrations for CO_2, CH_4 and N_2O, the contents of N_2, O_2 and carbonate, and the carbon isotopic compositions of CO_2 and carbonate in loess strata sequences are observed and measured. In addition, 19 gas samples data of the Weinan loess section, Shaanxi Province are combination with this research to study characteristics of greenhouse gases in loess. This research indicates that (1) the free gases in loess are neither paleo-atmospheric gases nor modern atmospheric gases; (2) the concentrations of CO_2, CH_4 and N_2O in loess are higher than atmospheric level; (3) the δ~(13)C of loess CO_2 shows that the CO_2 in loess mainly comes from the oxygenolysis of organic matters, but because of isotopic exchange with carbonate in loess, the carbon isotopic exchange with carbonate in loess, the carbon isotopic compositions of loess CO_2 are much more heavier than organic original CO_2; (4) the concentration of CH_4 in Malan loess is lower because it is not favorable for the decomposition of anaerobic bacteria in the Malan Loess; (5) estimation of the total amount of the carbonate in loess reveals that loess is a huge carbon reservoir (about 850PgC). In addition, the impact of the deuterogenic carbonatization during the loess accumulation on the global carbon cycle was discussed, and the preliminary conclusion is that the research work is still not enough to evaluate the effect of loess on the sources and sinks of the anthropogenic CO_2.