6 resultados para structural equations modelling
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A lower-upper symmetric Gauss-Seidel (LU-SGS) subiteration scheme is constructed for time-marching of the fluid equations. The Harten-Lax-van Leer-Einfeldt-Wada (HLLEW) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and transfinite interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then, the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted.
Resumo:
Through the coupling between aerodynamic and structural governing equations, a fully implicit multiblock aeroelastic solver was developed for transonic fluid/stricture interaction. The Navier-Stokes fluid equations are solved based on LU-SGS (lower-upper symmetric Gauss-Seidel) Time-marching subiteration scheme and HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) spacing discretization scheme and the same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Transfinite interpolation (TFI) is used for the grid deformation of blocks neighboring the flexible surfaces. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between fluid and structure. The developed code was fort validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. In the subsonic and transonic range, the calculated flutter speeds and frequencies agree well with experimental data, however, in the supersonic range, the present calculation overpredicts the experimental flutter points similar to other computations. Then the flutter character of a complete aircraft configuration is analyzed through the calculation of the change of structural stiffness. Finally, the phenomenon of aileron buzz is simulated for the weakened model of a supersonic transport wing/body model at Mach numbers of 0.98 and l.05. The calculated unsteady flow shows, on the upper surface, the shock wave becomes stronger as the aileron deflects downward, and the flow behaves just contrary on the lower surface of the wing. Corresponding to general theoretical analysis, the flow instability referred to as aileron buzz is induced by a stronger shock alternately moving on the upper and lower surfaces of wing. For the rigid structural model, the flow is stable at all calculated Mach numbers as observed in experiment
Resumo:
A lower-upper symmetric Gauss-Seidel (LU-SGS) subiteration scheme is constructed for time-marching of the fluid equations. The Harten-Lax-van Leer-Einfeldt-Wada (HLLEW) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and transfinite interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then, the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted.
Resumo:
Mechanisms underlying cognitive psychology and cerebral physiological of mental arithmetic with increasing are were studied by using behavioral methods and functional magnetic resonance imaging (fMRI). I. Studies on mechanism underlying cognitive psychology of mental arithmetic with increasing age These studies were accomplished in 172 normal subjects ranging from 20 to 79 years of age with above 12 years of education (Mean = 1.51, SD = 1.5). Five mental arithmetic tasks, "1000-1", "1000-3", "1000-7", "1000-13", "1000-17", were designed with a serial calculation in which subjects sequentially subtracted the same prime number (1, 3, 7, 13, 17) from another number 1000. The variables studied were mental arithmetic, age, working memory, and sensory-motor speed, and four studies were conducted: (1) Aging process of mental arithmetic with different difficulties, (2) mechanism of aging of mental arithmetic processing. (3) effects of working memory and sensory-motor speed on aging process of mental arithmetic, (4) model of cognitive aging of mental arithmetic, with statistical methods such as MANOVA, hierarchical multiple regression, stepwise regression analysis, structural equation modelling (SEM). The results were indicated as following: Study 1: There was an obvious interaction between age and mental arithmetic, in which reaction time (RT) increased with advancing age and more difficult mental arithmetic, and mental arithmetic efficiency (the ratio of accuracy to RT) deceased with advancing age and more difficult mental arithmetic; Mental arithmetic efficiency with different difficulties decreased in power function: Study 2: There were two mediators (latent variables) in aging process of mental arithmetic, and age had an effect on mental arithmetic with different difficulties through the two mediators; Study 3: There were obvious interactions between age and working memory, working memory and mental arithmetic; Working memory and sensory-motor speed had effects on aging process of mental arithmetic, in which the effect of working memory on aging process of mental arithmetic was about 30-50%, and the effect of sensory-motor speed on aging process of mental arithmetic was above 35%. Study 4: Age, working memory, and sensory-motor speed had effects on two latent variables (factor 1 and factor 2), then had effects on mental arithmetic with different difficulties through factor 1 which was relative to memory component, and factor 2 which relative to speed component and had an effect on factor 1 significantly. II. Functional magnetic resonance imaging study on metal arithmetic with increasing age This study was accomplished in 14 normal right-handed subjects ranging from 20 to 29 (7 subjects) and 60 to 69 (7 subjects) years of age by using functional magnetic resonance imaging apparatus, a superconductive Signa Horizon 1.5T MRI system. Two mental arithmetic tasks, "1000-3" and "1000-17", were designed with a serial calculation in which subjects sequentially subtracted the same prime number (3 or 17) from another number 1000 silently, and controlling task, "1000-0", in which subjects continually rehearsed number 1000 silently, was regarded as baseline, based on current "baseline-task" OFF-ON subtraction pattern. Original data collected by fMRI apparatus, were analyzed off-line in SUN SPARC working station by using current STIMULATE software. The analytical steps were composed of within-subject analysis, in which brain activated images about mental arithmetic with two difficulties were obtained by using t-test, and between-subject analysis, in which features of brain activation about mental arithmetic with two difficulties, the relationship between left and right hemisphere during mental arithmetic, and age differences of brain activation in young and elderly adults were examined by using non-parameter Wilcoxon test. The results were as following:
Resumo:
The slide of unstable sedimentary bodies and their hydraulic effects are studied by numerical means. A two-dimensional fluid mechanics model based on Navier-Stokes equations has been developed considering the sediments and water as a mixture. Viscoplastic and diffusion laws for the sediments have been introduced into the model. The numerical model is validated with an analytical solution for a Bingham flow. Laboratory experiments consisting in the slide of gravel mass have been carried out. The results of these experiments have shown the importance of the sediment rheology and the diffusion. The model parameters are adjusted by trial and error to match the observed “sandflow”.