3 resultados para sport team identification
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
Resumo:
Amino acid substitution matrices play an essential role in protein sequence alignment, a fundamental task in bioinformatics. Most widely used matrices, such as PAM matrices derived from homologous sequences and BLOSUM matrices derived from aligned segments of PROSITE, did not integrate conformation information in their construction. There are a few structure-based matrices, which are derived from limited data of structure alignment. Using databases PDB_SELECT and DSSP, we create a database of sequence-conformation blocks which explicitly represent sequence-structure relationship. Members in a block are identical in conformation and are highly similar in sequence. From this block database, we derive a conformation-specific amino acid substitution matrix CBSM60. The matrix shows an improved performance in conformational segment search and homolog detection.
Resumo:
In the previous paper, a class of nonlinear system is mapped to a so-called skeleton linear model (SLM) based on the joint time-frequency analysis method. Behavior of the nonlinear system may be indicated quantitatively by the variance of the coefficients of SLM versus its response. Using this model we propose an identification method for nonlinear systems based on nonstationary vibration data in this paper. The key technique in the identification procedure is a time-frequency filtering method by which solution of the SLM is extracted from the response data of the corresponding nonlinear system. Two time-frequency filtering methods are discussed here. One is based on the quadratic time-frequency distribution and its inverse transform, the other is based on the quadratic time-frequency distribution and the wavelet transform. Both numerical examples and an experimental application are given to illustrate the validity of the technique.