111 resultados para split-step Fourier method

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

为了使得数值模拟更为精确, 采用广义非线性薛定谔方程(GNSE)描述超短激光脉冲在光子晶体光纤中的传输演化过程, 并利用二阶分步傅里叶方法通过求解方程, 数值计算了相同脉宽和能量的超短脉冲在不同色散参量的光子晶体光纤中非线性传输和超连续谱的产生。比较了超短脉冲在光纤不同色散区传输时, 高阶色散和非线性效应对超连续谱的产生以及对脉冲波形演化的影响。结果表明, 相对于超短脉冲中心波长位于光子晶体光纤的正常和反常色散区, 可以相应获得短波波段和长波波段的超连续谱输出, 当超短脉冲中心波长位于零色散波长点时, 通

Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用分步傅里叶变换作为数值模拟的方法,以二阶飞秒光孤子和基态飞秒光孤子为例,讨论了初始啁啾对光纤中传播的飞秒光孤子的时域特征和频谱结构的影响,概括出如下的结论:初始啁啾通过影响飞秒光孤子谱线的红移,而对飞秒光孤子由拉曼效应引发的脉冲延迟产生较大影响,正的初始啁啾使脉冲延迟加剧,负的初始啁啾使脉冲延迟减小。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth and toxin content of the dinoflagellate Alexandrium tamarense ATHK was markedly affected by culture methods. In early growth phase at lower cell density static or mild agitation methods were beneficial to growth, but continuous agitation or aeration, to some extent, had an adverse effect on cell growth. Static culture in 2 L Erlenmeyer flasks had the highest growth rate (0.38 d(-1)) but smaller cell size compared with other culture conditions. Cells grown under aerated conditions possessed low nitrogen and phosphorus cell yields, namely high N and P cell-quota. At day 18, cells grown in continuous agitated and 1 h aerated culture entered the late stationary phase and their cellular toxin contents were higher (0.67 and 0.54 pg cell(-1)) compared with cells grown by other culture methods (0.27-0.49 pg cell(-1)). The highest cell density and cellular toxin content were 17190 cells mL(-1) and 1.26 pg cell(-1) respectively in an airlift photobioreactor with two-step culture. The results indicate that A. tamarense could be grown successfully in airlift photobioreactor by a two-step culture method, which involved cultivating the cells statically for 4 days and then aerating the medium. This provides an efficient way to enhance cell and toxin yield of A. tamarense.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An automatic step adjustment (ASA) method for average power analysis (APA) technique used in fiber amplifiers is proposed in this paper for the first time. In comparison with the traditional APA technique, the proposed method has suggested two unique merits such as a higher order accuracy and an ASA mechanism, so that it can significantly shorten the computing time and improve the solution accuracy. A test example demonstrates that, by comparing to the APA technique, the proposed method increases the computing speed by more than a hundredfold under the same errors. By computing the model equations of erbium-doped fiber amplifiers, the numerical results show that our method can improve the solution accuracy by over two orders of magnitude at the same amplifying section number. The proposed method has the capacity to rapidly and effectively compute the model equations of fiber Raman amplifiers and semiconductor lasers. (c) 2006 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phycoerythrins have been widely used in food, cosmetics., immunodiagnostics and analytical reagents. An efficient one-step chromatography method for purification of R-phycoerythrins from Polysiphonia urceolata was described in this paper. Pure R-phycoerythrin was obtained with an absorbance ratio A(565)/A(280) of 5.6 and a high recovery yield of 67-33%, using a DEAE-Sepharose Fast Flow chromatography with a gradient elution of pH, alternative to common gradient elution of ionic strength. The absorption spectrum of R-phycoerythrin was characterized with three absorbance maxima at 565, 539 and 498 mum, respectively and the fluorescence emission spectrum at room temperature was measured to be 580nm. The results of native-PAGE. and SDS-PAGE showed no contamination by other proteins in the phycoerythrin solution. which suggests an efficient method for the separation and purification of R-phycoerythrins from Polysiphonia urceolata. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attaining sufficient accuracy and efficiency of generalized screen propagator and improving the quality of input gathers are often problems of wave equation presack depth migration, in this paper,a high order formula of generalized screen propagator for one-way wave equation is proposed by using the asymptotic expansion of single-square-root operator. Based on the formula,a new generalized screen propagator is developed ,which is composed of split-step Fourier propagator and high order correction terms,the new generalized screen propagator not only improving calculation precision without sharply increasing the quantity of computation,facilitates the suitability of generalized screen propagator to the media with strong lateral velocity variation. As wave-equation prestack depth migration is sensitive to the quality of input gathers, which greatly affect the output,and the available seismic data processing system has inability to obtain traveltimes corresponding to the multiple arrivals, to estimate of great residual statics, to merge seismic datum from different projects and to design inverse Q filter, we establish difference equations with an embodiment of Huygens’s principle for obtaining traveltimes corresponding to the multiple arrivals,bring forward a time variable matching filter for seismic datum merging by using the fast algorithm called Mallat tree for wavelet transformations, put forward a method for estimation of residual statics by applying the optimum model parameters estimated by iterative inversion with three organized algorithm,i.e,the CMP intertrace cross-correlation algorithm,the Laplacian image edge extraction algorithm,and the DFP algorithm, and present phase-shift inverse Q filter based on Futterman’s amplitude and phase-velocity dispersion formula and wave field extrapolation theory. All of their numerical and real data calculating results shows that our theory and method are practical and efficient. Key words: prestack depth migration, generalized screen propagator, residual statics,inverse Q filter ,traveltime,3D seismic datum mergence

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical research, laboratory test and field observation show that most of sediment rock has anisotropic features. It will produce some notable errors when applying isotropic methods such as prestack depth migration and velocity analysis to dada acquired under anisotropic condition; it also has a bad effect on geologic interpretation. Generally speaking, the vertical transverse isotropic media is a good approximation to geologic structure, thus it has an important realistic meaning for anisotropic prestack depth migration theory researching and precise complex geologic imaging if considering anisotropic effect of seismic wave propagation. There are two indispensable parts in prestack depth migration of realistic records, one is proper prestack depth migration algorithm, and the other is velocity analysis using prestack seismic data. The paper consists of the two aspects. Based on implicit finite difference research proposed by Dietrich Ristow et al (1997) about VTI media prestack depth migration, the paper proposed split-step Fourier prestack depth migration algorithm (VTISSF) and Fourier finite difference algorithm (VTIFFD) based on wave equation for VTI media, program are designed and the depth migration method are tested using synthetic model. The result shows that VTISSF is a stable algorithm, it generally gets a good result if the reflector dip is not very steep, while undermigration phenomena appeared in steep dips case; the VTIFFD algorithm bring us better result in steep dips with lower efficiency and frequency dispersion. For anisotropic prestack depth migration velocity analysis of VTI media, The paper discussed the basic hypothesis of VTI model in velocity analysis algorithm, basis of anisotropic prestack depth migration velocity analysis and travel time table calculation of VTI media in integral prestack depth migration. Then , analyzed the P-wave common imaging gather in the case of homogeneous velocity and vertically variable velocity . studied the residual correction in common imaging gather produced by media parameter error, analyzed the condition of flat event and correct depth in common imaging gather . In this case, the anisotropic model parameter vector is , is vertical velocity of a point at top surface, is vertical velocity gradient, and are anisotropic parameter. We can get vertical velocity gradient from seismic data; then the P-wave common imaging gather of VTI media whose velocity varies in vertical and horizontal direction, the relationship between media parameter and event residual time shift of common image gather are studied. We got the condition of flattening common imaging gather with correct depth. In this case the anisotropic model parameter vector is , is velocity gradient in horizontal direction. As a result, the vertical velocity grads can be decided uniquely, but horizontal velocity grads and anisotropic parameter can’t be distinguished if no priori information available, our method is to supply parameter by velocity scanning; then, as soon as is supplied we can get another four parameters of VTI media from seismic data. Based on above analysis, the paper discussed the feasibility of migration velocity analysis in vertically and horizontally varied VTI media, synthetic record of three models are used to test the velocity analysis method . Firstly, anisotropic velocity analysis test is done using a simple model with one block, then we used a model with multiple blocks, thirdly, we analyzed the anisotropic velocity using a part of Marmousi model. The model results show that this velocity analysis method is feasible and correct.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An high-resolution prestack imaging technique of seismic data is developed in this thesis. By using this technique, the reflected coefficients of sheet sands can be gained in order to understand and identify thin oil reservoirs. One-way wave equation based migration methods can more accurately model seismic wave propagation effect such as multi-arrivals and obtain almost correct reflected energy in the presence of complex inhomogeneous media, and therefore, achieve more superiorities in imaging complex structure. So it is a good choice to apply the proposed high-resolution imaging to the presatck depth migration gathers. But one of the main shorting of one-way wave equation based migration methods is the low computational efficiency, thus the improvement on computational efficiency is first carried out. The method to improve the computational efficiency of prestack depth migration is first presented in this thesis, that is frequency-dependent varying-step depth exploration scheme plus a table-driven, one-point wavefield interpolation technology for wave equation based migration methods; The frequency-dependent varying-step depth exploration scheme reduces the computational cost of wavefield depth extrapolation, and the a table-driven, one-point wavefield interpolation technology reconstructs the extrapolated wavefield with an equal, desired vertical step with high computational efficiency. The proposed varying-step depth extrapolation plus one-point interpolation scheme results in 2/3 reduction in computational cost when compared to the equal-step depth extrapolation of wavefield, but gives the almost same imaging. The frequency-dependent varying-step depth exploration scheme is presented in theory by using the optimum split-step Fourier. But the proposed scheme can also be used by other wave equation based migration methods of the frequency domain. The proposed method is demonstrated by using impulse response, 2-D Marmousi dataset, 3-D salt dataset and the 3-D field dataset. A method of high-resolution prestack imaging is presented in the 2nd part of this thesis. The seismic interference method to solve the relative reflected coefficients is presented. The high-resolution imaging is obtained by introducing a sparseness- constrained least-square inversion into the reflected coefficient imaging. Gaussian regularization is first imposed and a smoothed solution is obtained by solving equation derived from the least-square inversion. Then the Cauchy regularization is introducing to the least-square inversion , the sparse solution of relative reflected coefficients can be obtained, that is high-resolution solution. The proposed scheme can be used together with other prestack imaging if the higher resolution is needed in a target zone. The seismic interference method in theory and the solution to sparseness-constrained least-square inversion are presented. The proposed method is demonstrated by synthetic examples and filed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies numerically the dark incoherent spatial solitons propagating in logarithmically saturable nonlinear media by using a coherent density approach and a split-step Fourier approach for the first time. Under odd and even initial conditions, a soliton triplet and a doublet are obtained respectively for given parameters. Simultaneously, coherence properties associated with the soliton triplet and doublet are discussed. In addition, if the values of the parameters are properly chosen, five and four splittings from the input dark incoherent spatial solitons can also form. Lastly, the grayness of the soliton triplet and that of the doublet are studied, in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On 70~(th) SEG Annual meeting, many author have announced their result on the wave equation prestack depth migration. The methods of the wave-field imaging base on wave equation becomes mature and the main direction of seismic imaging. The direction of imaging the complex media has been the main one of the projects that the national "85" and "95" reservoir geophysics key projects and "Knowledge innovation key project of Chinese Academy of Science" have been supported. Furthermore, we began the study for special oil field situation of our nation with the international research groups. Under the background, the author combined the thoughts of symplectic with wave equation pre-stack depth migration, and develops and efficient wave equation pre-stack depth migration method. The purpose of this work is to find out a way to imaging the complex geological goals of Chinese oilfields and form a procedure of seismic data processing. The paper gives the approximation of one way wave equation operator, and shows the numerical results. The comparisons have been made between split-step phase method, Kirchhoff and Ray+FD methods on the pulse response, simple model and Marmousi model. The results shows that the method in this paper has an higher accuracy. Four field data examples have also be given in this paper. The results of field data demonstrate that the method can be usable. The velocity estimation is an important part of the wave equation pre-stack depth migration. A parallel velocity estimation program has been written and tested on the Beowulf clusters. The program can establish a velocity profile automatically. An example on Marmousi model has shown in the third part of the paper to demonstrate the method. Another field data was also given in the paper. Beowulf cluster is the converge of the high performance computer architecture. Today, Beowulf Cluster is a good choice for institutes and small companies to finish their task. The paper gives some comparison results the computation of the wave equation pre-stack migration on Beowulf cluster, IBM-SP2 (24 nodes) in Daqing and Shuguang 3000, and the comparison of their prize. The results show that the Beowulf cluster is an efficient way to finish the large amount computation of the wave equation pre-stack depth migration, especially for 3D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On 70~(th) SEG Annual meeting, many author have announced their result on the wave equation pre-stack depth migration. The methods of the wave-field imaging base on wave equation becomes mature and the main direction of seismic imaging. The direction of imaging the complex media has been the main one of the projects that the national "85" and "95" reservoir geophysics key projects and "Knowledge innovation key project of Chinese Academy of Science" have been supported. Furthermore, we began the study for special oil field situation of our nation with the international research groups. Under the background, the author combined the thoughts of symplectic with wave equation pre-stack depth migration, and develops and efficient wave equation pre-stack depth migration method. The purpose of this work is to find out a way to imaging the complex geological goals of Chinese oilfields and form a procedure of seismic data processing. The paper gives the approximation of one way wave equation operator, and shows the numerical results. The comparisons have been made between split-step phase method, Kirchhoff and Ray+FD methods on the pulse response, simple model and Marmousi model. The result shows that the method in this paper has an higher accuracy. Four field data examples have also be given in this paper. The results of field data demonstrate that the method can be usable. The velocity estimation is an important part of the wave equation pre-stack depth migration. A. parallel velocity estimation program has been written and tested on the Beowulf clusters. The program can establish a velocity profile automatically. An example on Marmousi model has shown in the third part of the paper to demonstrate the method. Another field data was also given in the paper. Beowulf cluster is the converge of the high performance computer architecture. Today, Beowulf Cluster is a good choice for institutes and small companies to finish their task. The paper gives some comparison results the computation of the wave equation pre-stack migration on Beowulf cluster, IBM-SP2 (24 nodes) in Daqing and Shuguang3000, and the comparison of their prize. The results show that the Beowulf cluster is an efficient way to finish the large amount computation of the wave equation pre-stack depth migration, especially for 3D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在飞秒抽运一探测光谱技术中,空间分辨的探测光信号反映了在不同空间位置的材料的非线性效应。当抽运光强度增大时,探测光信号中会出现明显的高阶特别是五阶非线性效应。利用劈裂算子方法直接解决了一维非线性传播方程的问题。在数值模拟中,研究了在不同抽运强度和位置下的抽运一探测过程中的五阶非线性效应。在足够高的抽运场下,探测信号出现清晰的振荡,显示了三阶和五阶非线性效应之间的干涉。当空间位置离抽运场中心足够远时,五阶比三阶非线性效应的衰减快得多,对其物理机制和趋势进行了定性的讨论。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uniform octahedral LuVO4 microcrystals have been successfully prepared through a designed two-step hydrothermal method. One-dimensional lutetium precursor was first prepared through a simple hydrothermal route. Subsequently, a well-shaped octahedral LuVO4 sample was synthesized at the expense of the wirelike precursors during the hydrothermal process. The whole process in this method was carried out in aqueous conditions without the use of any organic solvents, surfactant, or catalyst. The conversion process from nanowire precursor to octahedral product has been investigated in detail. The LuVO4 : Ln(3+) (Ln Eu, Dy, Sm, and Er) phosphors show strong light emissions with different colors coming from different activator ions under ultraviolet light excitation or low-voltage electron beam excitation. Furthermore, this general and facile method may be of much significance in the synthesis of many other lanthanide compounds with polyhedral morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thick nonpolar (10 (1) over bar0) GaN layers were grown on m-plane sapphire substrates by hydride vapor phase epitaxy (HVPE) using magnetron sputtered ZnO buffers, while semipolar (10 (1) over bar(3) over bar) GaN layers were obtained by the conventional two-step growth method using the same substrate. The in-plane anisotropic structural characteristics and stress distribution of the epilayers were revealed by high. resolution X-ray diffraction and polarized Raman scattering measurements. Atomic force microscopy (AFM) images revealed that the striated surface morphologies correlated with the basal plane stacking faults for both (10 (1) over bar0) and (10 (1) over bar(3) over bar) GaN films. The m-plane GaN surface showed many triangular-shaped pits aligning uniformly with the tips pointing to the c-axis after etching in boiled KOH, whereas the oblique hillocks appeared on the semipolar epilayers. In addition, the dominant emission at 3.42eV in m-plane GaN films displayed a red shift with respect to that in semipolar epilayers, maybe owing to the different strain states present in the two epitaxial layers. [DOI: 10.1143/JJAP.47.3346]