19 resultados para split moving windows dissimilarity analysis

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From the macroscopic point of view, expressions involving reservoir and operational parameters are established for investigating the stability of moving interface in piston- and non-piston-like displacements. In the case of axi-symmetrical piston-like displacement, the stability is related to the moving interface position and water to oil mobility ratio. The capillary effect on the stability of moving interface depends on whether or not the moving interface is already stable and correlates with the wettability of the reservoir rock. In the case of non-piston-like displacement, the stability of the front is governed by both the relative permeability and the mobility ratio.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Some members of hairy/Enhancer-of-split-related gene (HES) family have important effects on axial mesoderm segmentation and the establishment and maintenance of the somite fringe. In fishes. the her6 gene, a member of the HES family, is the homologue Of heS1 in mammals and chicken. In this study, the her6 gene and its full-length cDNA from the common carp (Cyprinus carpio) were isolated and characterized. The genomic sequence of common carp her6 is approximately 1.7 kb. with four exons and three introns, and the full-length cDNA of 1314 bp encodes a Putative polypeptide of 271 amino acids. To analyse the promoter sequence of common carp her6. sequences of various lengths upstream from the transcription initiation site of her6 were fused to enhanced green fluorescent. protein gene (eGFP) and introduced into zebrafish embryos by microinjection to generate transgenic embryos. Our results show that the upstream sequence of 500 bp can direct highly efficient and tissue-specific expression of eGFP in zebrafish embryos. whereas a fragment of 200 bp containing the TATA box and a partial suppressor of hairless paired site sequence (SPS) is not sufficient to drive eGFP expression in zebrafish embryos.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new type of interferometer, the moving-optical-wedge interferometer, is presented, and its principle and properties are studied. The novel interferometer consists of one beam splitter, two flat fixed mirrors, two fixed compensating plates, one fixed optical wedge, and one moving optical wedge. The optical path difference (OPD) as a function of the displacement of the moving optical wedge from the zero path difference position is accomplished by the straight reciprocating motion of the moving optical wedge. A large physical shift of the moving optical wedge corresponds to a very short OPD value of the new interferometer if the values of the wedge angle and the refractive index of the two optical wedges are given properly. The new interferometer is not so sensitive to the velocity variation of the moving optical wedge and the mechanical disturbances compared with the Michelson interferometer, and it is very applicable to low-spectral-resolution application for any wavenumber region from the far infrared down to the ultraviolet. (C) 2008 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical analysis was carried out to study the moving boundary problem in the physical process of pulsed Nd-YAG laser surface melting prior to vaporization. The enthalpy method was applied to solve this two-phase axisymmetrical melting problem Computational results of temperature fields were obtained, which provide useful information to practical laser treatment processing. The validity of enthalpy method in solving such problems is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, a liquid (or melt) film of relatively high temperature ejected from a vessel and painted on the-moving solid film is analyzed by using the second-order fluid model of the non-Newtonian fluid. The thermocapillary flow driven by the temperature gradient on the free surface of a Newtonian liquid film was discussed before. The effect of rheological fluid on thermocapillary flow is considered in the present paper. The analysis is based on the approximations of lubrication theory and perturbation theory. The equation of liquid height and the process of thermal hydrodynamics of the non-Newtonian liquid film are obtained, and the case of weak effect of the rheological fluid is solved in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The loading reverberation is a multiple wave effect on the specimen in the split Hopkinson torsional bar (SHTB). Its existence intensively destroys the microstructure pattern in the tested material and therefore, interferes with the study correlating the deformed microstructure to the macroscopic stress-strain response. This paper discusses the problem of the loading reverberation and its effects on the post-mortem observations in the SHTB experiment. The cause of the loading reverberation is illustrated by a stress wave analysis. The modification of the standard SHTB is introduced, which involves attaching two unloading bars at the two ends of the original main bar system and adopting a new loading head and a couple of specially designed clutches. The clutches are placed between the main bar system and the unloading bars in order to lead the secondary loading wave out of the main bar system and to cut off the connection in a timely manner. The loading head of the standard torsional bar was redesigned by using a tube-type loading device associated with a ratchet system to ensure the exclusion of the reflected wave. Thus, the secondary loading waves were wholly trapped in the two unloading bars. The wave recording results and the contrasting experiments for examining the post-mortem microstructure during shear banding both before and after the modification highly support the effectiveness of the modified version. The modified SHTB realizes a single wave pulse loading process and will become a useful tool for investigating the relation between the deformed microstructure and the macroscopic stress-strain response. It will play an important role especially in the study of the evolution of the microstructure during the shear banding process. (C) 1995 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms of shock focusing in inner cavities of double wedge and cone are compared with that of traditional curved-surface shock focusing. The results show that there are many high temperature regions just behind shock surface which appear in two place alternately, one is near the surface of wall and the other is near the centerline. Also, changes in temperature, pressure, energy and power of the high temperature regions were analyzed and the results show that energy and power per unit volume increase, but total energy and power in the high temperature regions decrease during the process of shock moving forward the apex of double wedge or cone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two important issues in electron beam physical vapor deposition (EBPVD) are addressed. The first issue is a validity condition of the classical cosine law widely used in the engineering context. This requires a breakdown criterion of the free molecular assumption on which the cosine law is established. Using the analytical solution of free molecular effusion flow, the number of collisions (N-c) for a particle moving from an evaporative source to a substrate is estimated that is proven inversely proportional to the local Knudsen number at the evaporation surface. N-c = 1 is adopted as a breakdown criterion of the free molecular assumption, and it is verified by experimental data and DSMC results. The second issue is how to realize the uniform distributions of thickness and component over a large-area thin film. Our analysis shows that at relatively low evaporation rates the goal is easy achieved through arranging the evaporative source positions properly and rotating the substrate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical 2D method for simulation of two-phase flows including phase change under microgravity conditions is presented in this paper, with a level set method being coupled with the moving mesh method in the double-staggered grid systems. When the grid lines bend very much in a curvilinear grid, great errors may be generated by using the collocated grid or the staggered grid. So the double-staggered grid was adopted in this paper. The level set method is used to track the liquid-vapor interface. The numerical analysis is fulfilled by solving the Navier-Stokes equations using the SIMPLER method, and the surface tension force is modeled by a continuum surface force approximation. A comparison of the numerical results obtained with different numerical strategies shows that the double-staggered grid moving-mesh method presented in this paper is more accurate than that used previously in the collocated grid system. Based on the method presented in this paper, the condensation of a single bubble in the cold water under different level of gravity is simulated. The results show that the condensation process under the normal gravity condition is different from the condensation process under microgravity conditions. The whole condensation time is much longer under the normal gravity than under the microgravity conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conventional TbFeCo magneto-optical (MO) medium has a relatively smaller Kerr rotation angle in the blue region than in the red. With the recording wavelength gradually moving to the short wavelength, if TbFeCo is still used as recording medium, the conventional MO disk structure must be optimized to get a larger carrier to noise ratio (CNR). Sabi et al. have found that adding a metal layer attached to the TbFeCo film as thermal control layer is a useful way to get a high CNR. In this paper, we proved this through calculation, and carried out optimization of the new type of disk. Calculation results showed that the new structure is useful in preventing an excessive temperature increase, and has a better thermal response. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel microcavity semiconductor optical amplifier ( MCSOA) was proposed by incorporating top and bottom distributed Bragg reflectors ( DBRs) into the waveguide structure of conventional traveling-wave semiconductor optical amplifiers(TW-SOAs). The incoming( outgoing) light beam incidented onto (escaped from) the waveguide structure at a oblique angle through two optical windows, where the top DBR was etched away, and anti-reflection coating was deposited. The light beams inside the optical cavity were reflected repeatedly between two DBRs and propagated along waveguide in a zigzag optical path. The performance of the MCSOA was systematically investigated by extensive numerical simulation based on a traveling-wave model by taking into account the comprehensive effects of DBRs on both the amplification of signals and the filtering of spontaneous emission( SE). Our results show that the MCSOA is capable of achieving a fiber-to-fiber gain as high as 40dB and a low noise figure is less than 3.5dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode characteristics for two-dimensional equilateral-polygonal microresonators are investigated based on symmetry analysis and finite-difference time-domain numerical simulation. The symmetries of the resonators can be described by the point group C-Nv, accordingly, the confined modes in these resonators can be classified into irreducible representations of the point group C-Nv. Compared with circular resonators, the modes in equilateral-polygonal resonators have different characteristics due to the break of symmetries, such as the split of double-degenerate modes, high field intensity in the center region, and anomalous traveling-wave modes, which should be considered in the designs of the polygonal resonator microlasers or optical add-drop filters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The eigenmode characteristics for equilateral triangle resonator (ETR) semiconductor microlasers are analysed by the finite-difference time-domain technique and the Pade approximation. The random Gaussian correlation function and sinusoidal function are used to model the side roughness of the ETR. The numerical results show that the roughness can cause the split of the degenerative modes, but the confined modes can still have a high quality factor. For the ETR with a 3 mum side length and the sinusoidal fluctuation, we can have a quality factor of 800 for the fundamental mode in the wavelength of 1500 nm, as the amplitude of roughness is 75 mn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An improved axisymmetric mathematic modeling is proposed for the process of hydrate dissociation by depressurization around vertical well. To reckon in the effect of latent heat of gas hydrate at the decomposition front, the energy balance equation is employed. The semi-analytic solutions for temperature and pressure fields are obtained by using Boltzmann-transformation. The location of decomposition front is determined by solving initial value problem for system of ordinary differential equations. The distributions of pressure and temperature along horizontal radiate in the reservoir are calculated. The numeric results indicate that the moving speed of decomposition front is sensitively dependent on the well pressure and the sediment permeability. Copyright (C) 2010 John Wiley & Sons, Ltd.