41 resultados para species richness index

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevational and latitudinal patterns of species richness for birds and mammals were compared with human population density in relation to nature reserve designation in two areas of Yunnan Province, China. Results suggest that species richness is not the same for the two areas. In Gaoligongshan Region, species richness is inversely correlated with elevation and altitude, while reserve designation is positively correlated with elevation and latitude. In Jingdong County, reserve designations are positively correlated with elevation, but species richness shows no clear trends. In general, the present situation is strongly influenced by human activities. It appears that reserve designation is mismatched with species richness in Gaoligongshan Region, while there is a better fit between the two in Jingdong County. In both areas, however, it appeared that reserves were located primarily in order to reduce conflict with humans rather than to maximize conservation of biodiversity, probably because humans were responsible for forest-especially primary forest-destruction and degradation in the low-lying areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of vascular plant species richness along an altitudinal gradient and their relationships with environmental variables, including slope, aspect, bank (flooding) height, and river width of the Xiangxi River, Hubei Province, were examined. Total vascular plant species richness changed with elevation: it increased at lower elevations, reached a maximum in the midreaches and decreased thereafter. In particular, tree and herbaceous species richness were related to altitude. Correlation analysis (Kendall's tau) between species richness and environmental variables indicated that the change in species richness in the riparian zone was determined by riparian environmental factors and characteristics of regional vegetation distribution along the altitudinal gradient. The low species richness at lower elevations resulted from seasonal flooding and human activities - agriculture and fuel collection - and the higher. Species richness ill (he midreaches reflected transitional zones ill natural vegetation types that had had little disturbance. These results oil species distribution in the riparian community could he utilized as a reference for restoration efforts to improve water quality of the emerging reservoir resulting from the Three Gorges Hydroelectric Dam project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated how the high small-scale species richness of an alpine meadow on the Qinghai-Tibet Plateau, China, is maintained. This area is characterized by strong wind and severe cold during long winters. In winter, most livestock is grazed on dead leaves in small pastures near farmers' residences, whereas in the short summer, livestock is grazed in mountainous areas far from farmers' residences. The number of plant species and the aboveground biomass were surveyed for three adjacent pastures differing in grazing management: a late-winter grazing pasture grazed moderately from 1 February to 30 April, an early-winter grazing pasture grazed lightly from 20 September to late October, and a whole-year grazing pasture grazed intensively throughout the entire year. In each pasture, we harvested the aboveground biomass from 80 or 100 quadrats of 0.01 m(2) along a transect and classified the contents by species. We observed 15.5-19.7 species per 0.01 m(2), which is high richness per 0.01 m(2) on a worldwide scale. The species richness in the two winter grazing pastures was higher than that in the whole-year grazing pasture. The spatial variation in species richness and species composition in the two winter grazing pastures in which species richness was high was greater than that in the whole-year grazing pasture in which species richness was lower. Most of the leaves that are preserved on the winter grazing pastures during summer are blown away by strong winds during winter, and the remaining leaves are completely exhausted in winter by livestock grazing. A pasture with a high richess is accompanied by a high spatial variation in species richness and species composition. There is a high possibility that the characteristic of spatial variation is also caused by traditional grazing practices in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grazing by domestic herbivores is generally recognized as a major ecological factor and an important evolutionary force in grasslands. Grazing has both extensive and profound effects on individual plants and communities. We investigated the response patterns of Polygonum viviparum species and the species diversity of an alpine shrub meadow in response to long-term livestock grazing by a field manipulative experiment controlling livestock numbers on the Qinghai-Tibet Plateau in China. Here, we hypothesize that within a range of grazing pressure, grazing can alter relative allocation to different plant parts without changing total biomass for some plant species if there is life history trade-offs between plant traits. The same type of communities exposed to different grazing pressures may only alter relative species' abundances or species composition and not vary species diversity because plant species differ in resistant capability to herbivory. The results show that plant height and biomass of different organs differed among grazing treatments but total biomass remained constant. Biomass allocation and absolute investments to both reproduction and growth decreased and to belowground storage increased with increased grazing pressure, indicating the increasing in storage function was attained at a cost of reducing reproduction of bulbils and represented an optimal allocation and an adaptive response of the species to long-term aboveground damage. Moreover, our results showed multiform response types for either species groups or single species along the gradient of grazing intensity. Heavy grazing caused a 13.2% increase in species richness. There was difference in species composition of about 18%-20% among grazing treatment. Shannon-Wiener (H') diversity index and species evenness (E) index did not differ among grazing treatments. These results support our hypothesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the growing seasons of 2002 and 2003, biomass productivity and diversity were examined along an altitudinal transect on the south-western slope of Beishan Mountain, Maqin County (33 degrees 43'-35 degrees 16'N, 98 degrees 48'-100 degrees 55'E), Qinghai-Tibetan Plateau. Six altitudes were selected, between 3840 and 4435 m. Soil organic matter, soil available N and P and environmental factors significantly affected plant-species diversity and productivity of the alpine meadows. Aboveground biomass declined significantly with increasing altitude (P < 0.05) and it was positively and linearly related to late summer soil-surface temperature. Belowground biomass (0 - 10-cm depth) was significantly greater at the lowest and highest altitudes than at intermediate locations, associated with water and nutrient availabilities. At each site, the maximum belowground biomass values occurred at the beginning and the end of the growing seasons (P < 0.05). Soil organic matter content, and available N and P were negatively and closely related to plant diversity (species richness, Shannon-Wiener diversity index, and Pielou evenness index).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study describes the current status of the small fish community in Niushan Lake in China, and examines the spatial and seasonal variations of the community in relation to key environmental factors. Based on macrophyte cover conditions, the lake was divided into three major habitat types: (1) Potamogeton maackianus habitat, (2) Potamogeton maackianus and Myriophyllum spicatum habitat, and (3) uncovered or less-covered habitat. Fish were sampled quantitatively in the three habitat types by block nets seasonally from September 2002 to August 2003. A total of 10 469 individuals from 27 fish species were caught, among which 20 species were considered as small fishes. Rhodeus ocellatus, Paracheilognathus imberbis, Pseudorasbora parva, Micropercops swinhonis and Cultrichthys erythropterus were recognized as dominant small fishes according to their abundance and occurrence. It was noted that (1) small fishes predominated the total number of fish species in the lake, which reflected to some degree the size diminution phenomenon of fish resources; (2) many small fishes had plant detritus as their food item, which was consistent with the abundance of macrophyte detritus in the lake and implied the importance of detritus in supporting small fish secondary production. Canonical correspondence analysis suggested that the spatial distributions of most small fishes were associated with complex macrophyte cover conditions. Macrophyte biomass was positively correlated with species richness, diversity index and the catch per unit of effort (CPUE) of the fish community. Water depth had no significant effects on species diversity and distribution of the small fishes. Correspondence analysis revealed a higher occurrence of the small fishes and higher abundance of individuals in summer and autumn. Seasonal length-frequency distributions of several species indicated that more larval and juvenile individuals appeared in spring and summer. This study provides some baseline information which will be essential to long-term monitoring of small fish communities in the Yangtze lakes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Structural and functional parameters of protozoan communities colonizing on PFU (polyurethane foam unit) artificial substrate were assessed as indicators of water quality in the Chaohu Lake, a large, shallow and highly polluted freshwater lake in China. Protozoan communities were sampled 1, 3, 6, 9 and 14 days after exposure of PFU artificial substrate in the lake during October 2003. Four study stations with the different water quality gradient changes along the lake were distinguishable in terms of differences in the community's structural (species richness, individual abundance, etc.) and functional parameters (protozoan colonization rates on PFU). The concentrations of TP, TN, COD and BOD as the main chemical indicators of pollution at the four sampling sites were also obtained each year during 2002-2003 for comparison with biological parameters. The results showed that the species richness and PFU colonization rate decreased as pollution intensity increased and that the Margalef diversity index values calculated at four sampling sites also related to water quality. The three functional parameters based on the PFU colonization process, that is, S-eq, G and T-90%, were strongly related to the pollution status of the water. The number of protozoan species colonizing on PFU after exposure of 1 to 3 days was found to give a clear comparative indication of the water quality at the four sampling stations. The research provides further evidence that the protozoan community may be utilized effectively in the assessment of water quality and that the PFU method furnishes rapid, cost-effective and reliable information that may be useful for measuring responses to pollution stress in aquatic ecosystems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In a Chinese eutrophic shallow lake, the spatial, temporal and vertical distributions of meiofauna in different lake zones along a eutrophic gradient were analyzed. The spatial distribution of meiofauna among sampling stations changed with nutrient levels. Nematoda were most abundant at the majority of sampling stations comprising 70.6 - 93.2 % meiofaunal abundance except for a hypereutrophic station. The seasonal patterns in abundance of nematodes, oligochaetes, rotifers, chironomids and different nematode feeding groups differed among stations, which revealed that the temporal variations of these meiofaunal groups and the nematode feeding groups may vary with different nutrient loadings. The vertical distributions of meiofaunal groups, nematode species, and nematode trophic groups in the upper and lower sediment layers were similar, suggesting a consistent vertical distribution pattern across different trophic conditions. Nematode species richness, Shannon-Wiener species diversity index, trophic diversity and Maturity Index were significantly correlated with nutrient levels (total phosphorus and nitrogen in lake water and total phosphorus in sediment). Our results suggest the importance of nematode community analyses in the assessment of freshwater eutrophication.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

横断山地区是一个十分自然的植物区系地区,在中国植物区系分区中是作为泛北极植物区中国-喜马拉雅亚区中的一个地区,其种子植物区系具有丰富的科、属、种,地理成分复杂,特有现象和替代现象明显。该地区作为植物区系和生物多样性的研究热点地区,长期以来极受中外植物学家关注。横断山脉东缘是中国-喜马拉雅和中国-日本植物区系的交汇过渡区域,北部的岷江流域以及南部的金沙江流域,孕育了该区丰富的物种资源和植被资源。而岷江干热河谷和金沙江干热河谷的相似性和相关性,更为该区的植物区系和生物多样性南北的对比研究提供了有利的条件。 本研究选择的九顶山西坡和龙肘山分别位于横断山区北部和南部,九顶山属岷江流域而龙肘山属金沙江流域。本研究结合植物区系研究和生物多样性研究,对该区的植物资源进行调查。通过样带调查和样线踏查结合,大量详实的野外样方调查和标本采集,进行传统的区系研究和生物多样性研究。研究该区物种多样性的海拔梯度格局及其潜在的影响影子,并利用新的区系评估质量方法对九顶山西坡的植物区系质量进行定量的研究,以期能更为深刻的理解该区的植物资源,为该区的资源保护和利用提供合理可行的建议。主要研究结论如下: 1)九顶山西坡植物区系的性质和特点 经鉴定和统计,九顶山西坡共有1707 种维管植物,分属617 属和140 科,其中种子植物1616 种,分属572 属117 科。就科的分布区成分构成而言,该区系的热带成分与温带成分相当,热带成分略占优势,表明九顶山西坡的植物区系与热带植物区系有较强的联系。但是,在九顶山西坡属的分布区类型所占的比例上,温带成分远远超过了热带成分,本区的种子植物分布表现出明显的温带性质。且温带分布类型的许多物种组成了九顶山西坡植被的建群种和优势种,是本区系最重要的成分,充分体现了本区系的温带性质。 2)九顶山西坡不同植被带的生物多样性海拔梯度格局 基于对土门-断头崖、茶山-九顶山、雁门沟-光光山三条垂直植被样带的调查,我们发现九顶山西坡的生物多样性沿海拔梯度的变化呈现出一定的规律性,不同样带之间有一定差异。就三条样带的物种组成相似性来看,虽然土门-断头崖样带属于涪江水系,而茶山-九顶山样带和雁门沟-光光山样带属于岷江水系,但不同水系对该区物种组成的影响并不明显。三条样带中,草本层物种丰富度均远远大于灌木层和乔木层,而以乔木层物种丰富度最低;α-多样性指数随着海拔梯度的变化在土门-断头崖样带中呈现单一下降趋势,在茶山-九顶山样带表现为双峰模型,而在雁门沟-光光山样带则表现为不显著波动变化;均匀度指数在土门-断头崖样带呈现出单一下降的趋势,在雁门沟-光光山样带表现为凹形曲线,而在茶山-九顶山样带却无明显的变化规律。β-多样性指数在土门-断头崖样带和茶山-九顶山样带呈现出明显的波动状态,植被类型替代现象明显;而在雁门沟-光光山样带却并未有十分显著的转折点,因其水平植被带受到干扰,同海拔替代现象不显著。 3)九顶山西坡维管植物丰富度的海拔梯度格局 我们考察了九顶山西坡和两条垂直样带(土门-断头崖和雁门沟-光光山样带)的不同分类等级(包括科、属、种)和不同生活型物种(乔木、灌木、禾草、蕨类和其它草本)的丰富度沿着海拔梯度的分布。结果发现,物种的丰富度海拔梯度格局具有不同的模式,单一下降和中间膨胀格局依然是其主流。不同生活型的物种具有不同的丰富度格局,但是对于环境需求相似的类型具有较相似的丰富度格局。不同的丰富度格局可能由多因素导致,包括:气候,海拔跨度,面积,人为干扰等等。 4)九顶山西坡区系质量评估 我们尝试使用传统的区系质量评估方法对九顶山西坡的区系质量进行评估,并尝试使用一种新的区系质量评估体系对该区的区系进行评价。在九顶山西坡随着海拔梯度的上升,平均保守性系数在各条植被带中均呈现出逐渐上升的趋势。区系质量指数随着海拔的升高都表现为双峰模型,在植被交错区区系质量指数相对较高,而在海拔的两极,区系质量指数都很低。大部分地区使用新方法计算所得的加权平均保守性系数和区系质量指数都比传统方法计算的平均保收性系数和区系质量指数要高,说明在九顶山西坡的三条样带中,大部分地区都是那些保守性系数较高的物种占据优势,同时也表明九顶山西坡具有很高质量的区系和自然植被。 5)龙肘山种子植物区系的性质和特点 龙肘山种子植物区系的物种较为丰富,共有154 科,544 属,1156 种。科的优势十分明显,单种属和寡种属数量众多,说明本区系植物成分较为复杂、起源古老、物种多样性指数较高。地理成分复杂,分布类型多样,其中热带成分在总数量上高于温带成分,但是许多温带成分的属是该区植被的重要建群类群和优势类群,表现出明显的亚热带性质。 6)龙肘山生物多样性的现状和特点 在海拔梯度上,龙肘山地区无论是科、属、种的数量,还是不同等级分类单元之间的数量比,均呈现先升后降的趋势,并在中海拔地区达到峰值。物种多样性指数从总体上来说变化幅度不大,略有先升后降的趋势,在中海拔梯度物种多样性最高。乔、灌、草三层的多样性指数表现出乔木层<灌木层<草本层的特征;乔木层均匀度的变化很大,而灌木层和草本层均匀度的变化较小;灌木层均匀度的波动又强于草本层。β-多样性指数呈现单峰模式,中海拔地区最高。就龙肘山东、西坡物种多样性相比较而言,两者虽然在数值上交替上升,但是却体现出了较为一致的趋势,但西坡因受到干热河谷气候的影响,其平均气温要高于东坡,导致了东坡植物群落和物种的分布比西坡要低。在区系成分构成上,低山区的相同海拔段,西坡的热带亚热带成分所占的比例要比东坡高,这是因为西坡的平均气温比东坡稍高,导致了热带、亚热带物种分布更多。而随着海拔的上升,东、西两坡的气候、土壤等条件趋于一致,其植物区系成分的构成格局也趋于一致。 The Hengduan Mountain region is a very natural floristic region; it belongs toChina-Himalaya sub-region of Holarctic region in floristic subarea of China. The flora in this areais rich in family, genus and species; has a very complex composition of geographical elements;especially with high richness of endemic species and obvious substitution phenomenon. Thisregion as a hot-spot area of floristic and biodiversity, has fascinated biologists in the world for along time. The eastern range of Hengduan Mountain is the transition zone of China – Himalayaforest sub-region and China-Japan forest sub-region in floristic. The water systems are quitedifferent, Minjiang River in the north and Jishajiang River in the south grow quit different but alsoabundant plant species and vegetation resources. The similarity and correlativity of Minjiang River dry valleys and Jinshajiang River dry valleys have provided advantageous condition tocontrast flora and biodiversity between north and south. In the present study, the Jiuding Mountainlies in the north of Hengduan Mountain and belongs to Minjiang River, and the LongzhouMountain lies in the south of Hengduan Mountain and belongs to Jinshajiang River. In our study, we combined the methods of floristic research and biodiversity investigation toexplore the resources of plant species and vegetations; sampled with transects along the altitudinalgradients and also with transverse straps with similar elevation; collected the vascular plant specimen with sampling plots of ecology. We explored the plant species richness patterns alongaltitudinal gradients and discussed the underlying factors aroused these patterns; and used a novelmethod to assess the quality of Jiuding Mountain’s flora. All for a deeper comprehension of the plant recourses of this region; and provided feasible and reasonable suggestion for the protectionof resources. The results were as follows: 1 The characteristic of the flora of the west slope of Jiuding Mountain We had collected 1707 species of vascular plants belonging to 617 genera in 140 families inthe west slope of Jiuding Mountain,in which included 1616 seed plant species belonging to 572genera and 117 families. As for the composition of the areal types of the Families of seed plants,tropic components and temperate components are well-balanced, and percentage of tropicscomponents is higher than that of temperate ones for a litter bit. This shows the flora in the westslope of Jiuding Mountain has strong relationship with the tropic flora. But for the composition ofthe areal types of genera, temperate components have far exceeded the tropics ones, indicated thewhole flora with a conspicuous temperate character. Temperate components possess maximumproportion in the west slope of Jiuding Mountain, and many of them belong to constructivespecies and dominant species in the vegetation, are most important components in JiudingMountain’s Flora, also have embodied the temperate character of this area sufficiently. 2 Biodiversity patterns along altitudinal gradients in different vegetation transects in the westslope of Jiuding Mountain Based on the investigation of three vegetation transects (including Tumen-Duantouya transect,Chashan-Jiudingshan transect and Yanmengou-Guangguangshan Transect) in the west slope ofJiuding Mountain, we found the change of biodiversity along the altitude gradients displayedcertain regularity, but have differences among different transects. The three transects belong todifferent water systems; the Tumen-Duantouya transect belongs to Fujiang River, and the othertwo belong to Minjiang River. From the similarity of species compositions of different transects,we found different water system didn’t show obvious impact on the species composition. In all thethree transects, the species richness of herb layer was remarkably higher than shrub and tree layer,and the species richness of tree layer was the lowest one. With the increasing of the altitude, theline of α-diversity was monotonically decreasing curve in Tumen-Duantouya transect, andbimodal curve in Chashan-Jiudingshan transect, but in Yanmengou-Guangguangshan transectshowed a wave-like curve although not very obvious. Species evenness showed monotonicallydecreasing trends in Tumen-Duantouya transect, and very low at mid-altitude in Yanmengou-Guangguangshan transect, but in Chashan-Jiudingshan transect changed irregularly. Changes inβ-diversity corresponded with the transition of vegetation in the Tumen-Duantouya transect andChashan-Jiudingshan transect, and the curve of β-diversity along altitude had obvious turningpoint; but in Yanmengou-Guangguangshan transect had no obvious turning point, and thesubstitution phenomenon was not obvious, transverse vegetation straps distributed interlaced. 3 Richness patterns of vascular plant species along altitude in the west slope of Jiuding Mountain Direct gradient analysis and regression methods were used to describe the species richnesspatterns along the altitudinal for Mt. Jiuding, as well as separately for Tumen-Duantouya Transectand Yanmengou-Guangguangshan Transect. Altitudinal gradient of diversity of units at differenttaxonomic level (including Family, Genus and Species) and at different life form (including tree,shrub, pteridophyte, grass and other herb) were tested to find differences among the richnesspattern. We found altitudinal richness also shows different patterns, and both monotonicallydecreasing pattern and hump-shaped pattern can be founded in vascular species richness. Speciesin different life forms show different altitudinal patterns, but those species with similarrequirements to environmental conditions show similar richness patterns along altitudinalgradients. Different richness patterns can be aroused by different climate, different altitudinal span,area factor, anthropogenic factor and so on. 4 Floristic quality assessments in the west slope of Jiuding Mountain We used both the conventional method broadly adopted in the USA and the new one toassess the floristic quality in the west slope of Jiuding Mountain. The Mean Coefficient ofConservatism (MC) had the trend of increment along the altitudinal gradients. The FloristicQuality Index (FQI) was a bimodal curve with increasing of elevation; FQI got maximum valuesin the transition zones of different vegetations in the middle altitude, and had very low values atthe two end of elevation. In most areas of the west slope of the Jiuding Mountain, the resultscalculated using the new methods were higher than those using the conventional method. Thisindicated the dominant species of the communities had very high coefficients of conservatism inmost areas of Jiuding Mountain, and the communities are relatively kept pristine and the habitats very integrative. 5 The characteristic of the flora of Longzhou Mountain The flora of Longzhou Mountain has very abundant in species composition; there are about1156 species of seed plants belonging to 544 genera in 154 families. In which, twelve families with more than 20 species include totally 232 genera and 532 species, and form the majority of itsflora. The origin of its flora is old, monospecific genera and oligotypic genera amounts to 510 innumber, which constitute 93.75% of total number of genera. The geographical components arevarious in Longzhou Mountain, the majority of flora are temperate and pantropic ones. The tropiccomponents overtopped temperate components on genera quantity, but many temperatecomponents belong to constructive species and dominant species in the vegetation, and the wholeflora shows an obvious subtropical character. 6 Current situation and characteristic of biodiversity in Longzhou Mountain With the increasing of altitude, the number of species, genus, family and the ratios ofdifferent taxonomic levels all displayed a trend of descending after rising first, and peaked atmiddle height area. The change of α-diversity was not very acutely, with the trend of descendingafter rising first in some degree, the middle height area had highest α-diversity. As studying thetree layer, shrub layer and herb layer respectively, the Shannon-Wiener index was in followingorder: tree layer < shrub layer < herb layer; the change of evenness was more complicatedly thanthat of diversity, the tree layer changed acutely, but the shrub layer and herb layer fluctuatedsmoothly. Changes in β-diversity also showed the trend of descending after rising first. TheJaccard index and Cody index all peaked at the middle height forest area. As for the comparison ofplant diversity and evenness between the west and east slope, the numerical values ascendedalternatively, but the trend of changing was similar. The distribution of similar plant communitiesand species in east slope were lower than the west slope for the influence of Jinsha River DryValley. As for the composition of different floristic components, in lower altitude area of westslope, the tropic and sub-tropic plants had higher ratio than east slope’s and even could be equal tothe temperate plants. With the increasing of elevation, the floristic composition become morelikely between the east and west slope and temperate plants dominated the flora.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

黄龙世界自然遗产地岷江冷杉林(Abies faxoniana)生境类型多样,群落结构复杂,群落植物种类组成多样性丰富。揭示不同生境的生物多样性及其差异是认识生物多样性格局、形成及维持机制的前提和进行多样性保育的基础。本文采用样方法对黄龙钙化滩生境、阴坡非钙化生境及半阳坡非钙化生境的岷江冷杉原始林植物群落结构及植物多样性进行了研究。结果表明: 黄龙岷江冷杉林具有明显的复层异龄结构,垂直结构明显,乔木、灌木、草本、苔藓层次分明。共发现高等植物386 种,其中维管植物46 科103 属163 种,苔藓植38 科83 属物223 种。各层片结构及物种组成如下: (1)钙化滩生境、阴坡非钙化生境、半阳坡非钙化生境分别发现乔木18 种、13种、8 种。乔木层均可分为两个亚层,第一亚层优势种均为岷江冷杉,第二亚层主要为岷江冷杉异龄树或其它大高位芽物种。钙化滩生境第一亚层除优势种岷江冷杉外混生有巴山冷杉(Abies fargesii)、粗枝云杉(Picea asperata)以及阔叶树种白桦(Betula platyphylla)等,第二亚层主要为岷江冷杉异龄树;阴坡非钙化生境第一亚层除优势种岷江冷杉外间有巴山冷杉和白桦,第二亚层物种主要为川滇长尾槭(Acer caudatum var. prattii);半阳坡非钙化生境第一亚层除优势种岷江冷杉外混生有巴山冷杉,第二亚层主要为岷江冷杉异龄树。依乔木层优势种的差异,钙化滩生境及半阳坡非钙化生境为岷江冷杉纯林,阴坡非钙化生境为岷江冷杉-川滇长尾槭混交林。不同生境乔木层郁闭度、乔木密度、树高结构、直径结构均存在差异。 (2)钙化滩生境发现灌木41 种,平均盖度为18.49±1.72(%),平均高度为52.12±4.45(cm),优势种为直穗小檗(Berberis dasystachya);阴坡非钙化生境发现灌木30 种,平均盖度为29.33±2.56 (%),平均高度为119.55±8.01 (cm),优势种为箭竹 (Fargesia spathacea) 、唐古特忍冬(Lonicera tangutica) 和袋花忍冬(Lonicera saccata);半阳坡非钙化生境发现灌木29 种,平均盖度为31.35±1.93 (%),平均高度为107.55±4.24 (cm),优势种为箭竹(Fargesia spathacea)。不同生境灌木层结构和物种组成多样性差异显著,钙化滩生境的灌木盖度、高度总体上较非钙化的坡地生境低, 钙化滩生境灌木以小型叶的落叶灌木为主,沟两侧非钙化的坡地生境上则发育了丰富箭竹。 (3)钙化滩生境发现草本46 种,平均盖度为7.18±0.79 (%),平均高度为5.04±0.26(cm),以山酢浆草(Oxalis griffithii)为优势种;阴坡非钙化生境发现草本物种71 种,平均盖度达29.04±2.31(%),平均高度为9.08±0.52(cm),以钝叶楼梯草(Elatostema obtusum)、山酢浆草为优势种;半阳坡非钙化生境草本物种50 种,平均盖度为以8.79±0.82(%),平均高度为7.67±0.43 (cm),以扇叶铁线蕨(Adiantum flabellulatum)、双花堇菜(Viola biflora)、华中蛾眉蕨(Lunathyrium shennongense)、山酢浆草为优势种。阴坡非钙化生境草本层片发育良好,多样性最为丰富,盖度和物种丰富度均显著高于钙化滩生境和半阳坡非钙化生境。 (4)钙化滩生境发现苔藓物种140 种,平均盖度达84.25±1.30 (%),以仰叶星塔藓(Hylocomiastrum umbratum) 等大型藓类为优势种;阴坡非钙化生境发现苔藓物种115 种,平均盖度为79.29±1.64 (%),以刺叶提灯藓(Mnium spinosum)、大羽藓(Thuidium cymbifolium)、毛尖燕尾藓(Bryhnia trichomitra)等个体较小的物种为优势种;半阳坡非钙化生境发现苔藓物种91 种,平均盖度为60.64±1.93 (%),也以刺叶提灯藓为优势种。 (5)钙化滩生境、阴坡非钙化生境、半阳坡非钙化生境的物种数分别为234 种、221 种、175 种。乔木层的Shannon-Wiener 指数分别为0.75 ±0.12、1.87±0.12、1.78±0.07(灌木层,0.44±0.08、1.71± 0.15、2.49±0.06;草本层,0.33±0.13、1.31±0.15 、2.15±0.08; 苔藓层1.30±0.11、2.08±0.04、1.73±0.11,);Pielou 均匀度指数分别为0.45±0.05、0.29±0.06、0.28±0.08(灌木层,0.75±0.03、0.68±0.05、0.52±0.06;草本层,0.68±0.02、0.77±0.02、0.74±0.02;苔藓层,0.40±0.03、0.63±0.02、0.52±0.03);Simpson's 优势度指数分别为0.63±0.06、0.78±0.04、0.83±0.07(灌木层,0.21±0.03、0.28±0.05、0.45±0.06;草本层,0.25±0.02、0.12±0.01、0.17±0.01;苔藓层,0.45±0.04、0.18±0.01、0.31±0.04)。三种生境间乔木层、草本层的Sorenson 群落相似性系数较低, 灌木层、苔藓层的的Sorenson 群落相似性系数较高。 综上所述,黄龙岷江冷杉林的群落结构、植物多样性在三种生境间存在差异性,这将意味着我们在进行黄龙世界自然遗产地的森林经营管理时要较多地关注岷江冷山林群落在不同生境中的差异性。 There were multiplex habitat types, complicated community structure and abundant species composition in the Huanglong World Natural Heritage Site. Uncovering the differences of biodiversity among different habitats was a precondition to understand the distribution, formation and sustaining mechanism of the biodiversity, and the foundation of biodiversity conservation. In the present study, using plenty of quadrants, we investigated the community structure and the biodiversity of the primitive Abies faxoniana forest in different habitats (travertine bottomland, semi-sunny-slope non-calcified habitat and shady-slope non-calcified habitat) in the Huanglong World Natural Heritage Site. The main results are as follows: All the primitive Abies faxoniana forests in the three habitats were uneven-aged with obvious vertical structure including tree layer, shrub layer, herb layer and bryophyte layer. A total of 386 higher plants including 163 vascular plant species (103 generic, 46 families) and 223 bryophyte species (83 generic, 38 families) were investigated. The structure and species composition of each layer are as follows: (1) There were 18, 13 and 8 tree species in travertine bottomland, shady-slope non-calcified habitat and semi-sunny-slope non-calcified habitat, respectively. The tree layers in all habitats can be divided into two clear sub-layers. The upper tree layers were dominated by Abies faxoniana, and the lower tree layers were dominated by uneven-aged Abies faxoniana or other phanerophytes species. There were Abies fargesii , Picea asperata and Betula platyphylla besides the dominated species (Abies faxoniana) in the upper tree layer in travertine bottomland, and the lower tree layers were dominated by uneven-aged Abies faxoniana; There were Abies fargesii and Betula platyphylla besides the dominated species (Abies faxoniana) in the upper tree layer in shady-slope non-calcified habitat, and the lower tree layers were dominated by Acer caudatum var. prattii; There was Abies fargesii besides the dominated species (Abies faxoniana) in the upper tree layer semi-sunny-slope non-calcified habitat, and the lower tree layers were dominated by uneven-aged Abies faxoniana. According to composition percentage of dominate species in tree layer, both the forest in travertine bottomland and in semi-sunny-slope non-calcified habitat could be ranked as pure forest, and the forest in shady-slope non-calcified habitat could be ranked as mingled forest. There were significant differences in crown density, plant density, height structure and diameter structure among the three habitats. (2) A total of 41 shrub species (average coverage 18.49±1.72%; average height 52.12±4.45 ㎝)were found in travertine bottomland, and the dominate species was Berberis dasystachya; A total of 30 shrub species (average coverage 29.33±2.56 %;average height 119.55±8.01 ㎝)were found in shady-slope non-calcified habitat, and the dominate species was Fargesia spathacea, Lonicera tangutica and Lonicera saccata. A total of 29 shrub species (average coverage 31.35±1.93%; average height 107.55±4.24 ㎝) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Fargesia spathacea. There were significant differences in structure and species diversity of the shrub layers among the three habitats. The coverage and height of shrub had lower value in travertine bottomland than in two non-calcified habitats. Moreover, travertine bottomland was dominated by deciduous shrub species with microphyll and non-calcified habitats developed abundant Fargesia spathacea species. (3) A total of 46 herb species (average coverage 7.18±0.79%;average height 5.04±0.26 ㎝)were found in travertine bottomland, and the dominate species was Oxalis griffithii; A total of 71 herb species (average coverage 29.04±2.31%;average height 9.08±0.52 ㎝)were found in shady-slope non-calcified habitat, and the dominate species was Elatostema obtusum and Oxalis griffithii. A total of 50 herb species (average coverage 8.79±0.82%;average height 7.67±0.43 ㎝) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Adiantum flabellulatum, Viola biflora, Lunathyrium shennongense and Oxalis griffithii. Herb layers developed well in shady-slope non-calcified habitat and had the higher species richness and coverage than travertine bottomland and semi-sunny-slope non-calcified habitat. (4) A total of 140 bryophyte species (average coverage 84.25±1.30%)were found in travertine bottomland, and the dominate species was big bryophyte species such as Hylocomiastrum umbratum and so on; A total of 115 bryophyte species (average coverage 79.29±1.64%)were found in shady-slope non-calcified habitat, and the dominate species was small bryophyte species such as Mnium spinosum, Thuidium cymbifolium, Bryhnia trichomitra and so on. A total of 91 bryophyte species (average coverage 60.64±1.93%) were found in semi-sunny-slope non-calcified habitat, and the dominate species was Mnium spinosum. (5) There were 234, 221 and 175 plant species in travertine bottomland, shady-slope non-calcified habitat and semi-sunny-slope non-calcified habitat, respectively. Shannon-Wiener index of the tree layer was 0.75 ±0.12, 1.87±0.12 and 1.78±0.07 (the shrub layer, 0.44±0.08, 1.71± 0.15 and 2.49±0.06; the herb layer, 0.33±0.13, 1.31±0.15 and 2.15±0.08; the bryophyte layer, 1.30±0.11, 2.08±0.04 and 1.73±0.11.) for the three habitats, respectively; Pielou index of the tree layer was 0.45±0.05, 0.29±0.06 and 0.28±0.08 (the shrub layer, 0.75±0.03, 0.68±0.05 and 0.52±0.06; the herb layer, 0.68±0.02, 0.77±0.02 and 0.74±0.02; the bryophyte layer, 0.40±0.03, 0.63±0.02 and 0.52±0.03.) for the three habitats, respectively. Simpson's index of the tree layer was 0.63±0.06, 0.78±0.04 and 0.83±0.07 (the shrub layer, 0.21±0.03、0.28±0.05、0.45±0.06; the herb layer, 0.25±0.02, 0.12±0.01 and 0.17±0.01; the bryophyte layer, 0.45±0.04, 0.18±0.01 and 0.31±0.04.) for the three habitats, respectively. There were low Sorenson index both in the tree layer and in the herb layer among the three habitats, whereas, high Sorenson index occurred both in the shrub layer and in the bryophyte layer. To sum up, there were differences both in community structure and plant diversity among the three different habitats, which means that we should pay more attention to habitats heterogeneities of the primitive Abies faxoniana forest when we take action to manage the forest in the Huanglong World Natural Heritage Site.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study on the relationship between plant species diversity and soil factors in the bird island of Qinghai Lake indicated that this island was a low diversity district,its Shannon-Wienner index and species richness decreased with the increasing soil available K,water soluble salt concentration and pH,and there were significant linear and quadratic correlations between them.Stepwise linear regressions showed that soil available K and water soluble salt were the key factors to estimate Shannon-Wienner index and species richness in this island,respectively,and no correlation was found between species evenness and soil factors.