3 resultados para sound effects

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sensory gating is the ability of the brain to modulate its sensitivity to incoming stimuli. The N40 component of the auditory evoked potential, evaluated with the paired click paradigm, was used to probe the gating effect in rats. The physical characteris

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of the unresolved subgrid-scale (SGS) motions on the energy balance of the resolved scales in large eddy simulation (LES) have been investigated actively because modeling the energy transfer between the resolved and unresolved scales is crucial to constructing accurate SGS models. But the subgrid scales not only modify the energy balance, they also contribute to temporal decorrelation of the resolved scales. The importance of this effect in applications including the predictability problem and the evaluation of sound radiation by turbulent flows motivates the present study of the effect of SGS modeling on turbulent time correlations. This paper compares the two-point, two-time Eulerian velocity correlation in isotropic homogeneous turbulence evaluated by direct numerical simulation (DNS) with the correlations evaluated by LES using a standard spectral eddy viscosity. It proves convenient to express the two-point correlations in terms of spatial Fourier decomposition of the velocity field. The LES fields are more coherent than the DNS fields: their time correlations decay more slowly at all resolved scales of motion and both their integral scales and microscales are larger than those of the DNS field. Filtering alone is not responsible for this effect: in the Fourier representation, the time correlations of the filtered DNS field are identical to those of the DNS field itself. The possibility of modeling the decorrelating effects of the unresolved scales of motion by including a random force in the model is briefly discussed. The results could have applications to the problem of computing sound sources in isotropic homogeneous turbulence by LES

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasonic absorption coefficients for ethylamine in heavy water (D2O) and in light water (H2O) have been measured in the frequency range from 0.8 to 220 MHz at 25 degrees C. A single relaxational process has been observed in these two kinds of solutions. From the concentration dependence of the ultrasonic relaxation parameters, and following the reaction mechanism proposed by Eigen et al. for ethylamine in H2O, the causes of the relaxations have been attributed to a perturbation of an equilibrium associated with a deuteron or proton transfer reaction. The rate and equilibrium constants have been estimated from deuterioxide or hydroxide ion concentration dependence of the relaxation frequency, and the kinetic isotope effects have been determined. In addition, the standard volume changes of the reactions have been calculated from the concentration dependence of the maximum absorption per wavelength, and the adiabatic compressibility has also been determined from the density and sound velocity for ethylamine in D2O and in H2O, respectively. These results are compared with those for propylamine and butylamine and are discussed in relation to the different kinetic properties between D2O and H2O, the reaction radii derived by Debye theory, and the structural properties of the reaction intermediate.