78 resultados para solid lipid nanoparticle

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin has been encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres by solid-in-oil-in-oil (S/O/O) emulsion technique using DMF/corn oil as new solvent pairs. To get better encapsulation efficiency, insulin nanoparticles were prepared by the modified isoelectric point precipitation method so that it had good dispersion in the inner oil phase. The resulting microspheres had drug loading of 10% (w/w), while the encapsulation efficiency could be up to 90-100%. And the insulin release from the microspheres could last for 60 days. Microspheres encapsulated original insulin with the same method had lower encapsulation efficiency, and shorter release period. Laser scanning confocal microscopy indicated the insulin nanoparticle and original insulin had different distribution in microspheres. The results suggested that using insulin nanoparticle was better than original insulin for microsphere preparation by S/O/O method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, rapid fabrication of Au nanoparticle (Au NP) films has been simply achieved by alternate adsorption of citrate-stabilized Au NPs and poly(diallyldimethylammonium chloride) with the aid of centrifugal force. In contrast to conventional electrostatic assembly, we carried out the assembly process in a centrifuge with a rotating speed of 4000 rpm, where centrifugal force can be imposed on Au NPs. Scanning electron microscopy and cyclic voltammetry were employed to characterize the assembly procedure and the thus-prepared thin solid films. Our results demonstrate that centrifugal force can promote the assembly of Au NPs and therefore enable the rapid fabrication of functional Au NP films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)(3)(2+) encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)(3)(2+) to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)(3)(2+) was grown through the Stober method. Highly luminescent Ru(bpy)(3)(2+) serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)(3)(2+) is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)(3)(2+) co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We synthesized a kind of gold nanoparticle protected by a synthetic lipid (didodecyidimethylammonium bromide, DDAB). With the help of these gold nanoparticles, hemoglobin can exhibit a direct electron transfer (DET) reaction. The formal potential locates at -169 mV vs. Ag/AgCl. Spectral data indicated the hemoglobin on the electrode was not denatured. The lipid-protected gold nanoparticles were very stable (for at least 8 months). Their average diameter is 6.42 nm. It is the first time to use monolayer-protected nanoparticles to realize the direct electrochemistry of protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new kind of solid substrate, a glassy carbon (GC) electrode, was selected to support lipid layer membranes. On the surface of the GC electrode, we made layers of didodecyldimethylammonium bromide (a synthetic lipid). From electrochemical impedance experiments, we demonstrated that the lipid layers on the GC electrode were bilayer lipid membranes. We studied the ion channel behavior of the supported bilayer lipid membrane. In the presence of perchlorate anions as the stimulus and ruthenium(II) complex cations as the marker ions, the lipid membrane channel was open and exhibited distinct channel current. The channel was in a closed state in the absence of perchlorate anions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation and characteristics of bilayer lipid membranes including conventional bilayer membrane, solid supported self-assembling bilayer lipid membrane, solid supported hybrid bilayer membrane are described in this paper, The applications of bilayer lipid membranes in electrochemical biosensors are reviewed and the future development of electrochemical biosensor based on bilayer lipid membranes is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A kind of solid substrate, glassy carbon (GC) electrode. was selected to support self-assembled lipid layer membranes. On the surface of GC electrode. we made layers of dimyristoylphosphatidylcholine (DMPG, a kind of lipid). From electrochemical impedance experiments. we demonstrated that the lipid layers on the GC electrode were bilayer lipid membranes. We immobilized horseradish peroxidase (HRP) into the supported bilayer lipid membranes (s-BLM) to develop a kind of mediator-free biosensor for H2O2. The biosensor exhibited fine electrochemical response, stability and reproducibility due to the presence of the s-BLM. As a model of biological membrane, s-BLM could supply a biological environment for enzyme and maintain its activity. So s-BLM is an ideal choice to immobilize enzyme for constructing the mediator-free biosensor based on GC electrode. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The infrared spectra of the bilayer system dodecylammonium chloride has been studied as a function of temperature. Unusual splitting of some vibrational modes helps us to characterize the structure of different solid states. This study provided the evidence for the occurrence of an order-disorder phase transition whose onset occurs at 327 K and its completion ends at 339 K. In the low temperature phase below 327 K, the virgin crystals form a well-ordered phase with all-transhydrocarbon chains. In the intermediate state between 327 and 339 K, the data demonstrate the introduction of intramolecular as well as intermolecular disorder. The coexistence of solid and liquid-crystal-like states is shown by the persistence of factor group splittings together with the existence of defect bands in the wide intermediate temperature range. In the high temperature phase over 339 K the crystals convert to a liquid-crystal-like system with extensive motional and conformational disorder, but still show characteristics in their infrared spectra which indicate the presence of ordered segments in the hexagonal solid phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Covering the solid lattice with a finite-element mesh produces a coarse-grained system of mesh nodes as pseudoatoms interacting through an effective potential energy that depends implicitly on the thermodynamic state. Use of the pseudoatomic Hamiltonian in a Monte Carlo simulation of the two-dimensional Lennard-Jones crystal yields equilibrium thermomechanical properties (e.g., isotropic stress) in excellent agreement with ``exact'' fully atomistic results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since hydration forces become very strong at short range and are particularly important for determining the magnitude of the adhesion between two surfaces or interaction energy, the influences of the hydration force and elastic strain energy due to hydration-induced layering of liquid molecules close to a solid film surface on the stability of a solid film in a solid-on-liquid (SOL) nanostructure are studied in this paper. The liquid of this thin SOL structure is a kind of water solution. Since the surface forces play an important role in the structure, the total free energy change of SOL structures consists of the changes in the bulk elastic energy within the solid film, the surface energy at the solid-liquid interface and the solid-air interface, and highly nonlinear volumetric component associated with interfacial forces. The critical wavelength of one-dimensional undulation, the critical thickness of the solid film, and the critical thickness of the liquid layer are studied, and the stability regions of the solid film have been determined. Emphasis is placed on calculation of critical values, which are the basis of analyzing the stability of the very thin solid film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete proof of the virial theorem in refined Thomas-Fermi-Dirac theory for all electrons of an atom in a solid is given.