323 resultados para soil column

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To avoid the limitation of the widely used prediction methods of soil organic carbon partition coefficients (K-OC) from hydrophobic parameters, e.g., the n-octanol/water partition coefficients (K-OW) and the reversed phase high performance liquid chromatographic (RP-HPLC) retention factors, the soil column liquid chromatographic (SCLC) method was developed for K-OC prediction. The real soils were used as the packing materials of RP-HPLC columns, and the correlations between the retention factors of organic compounds on soil columns (k(soil)) and K-OC measured by batch equilibrium method were studied. Good correlations were achieved between k(soil) and K-OC for three types of soils with different properties. All the square of the correlation coefficients (R-2) of the linear regression between log k(soi) and log K-OC were higher than 0.89 with standard deviations of less than 0.21. In addition, the prediction of K-OC from K-OW and the RP-HPLC retention factors on cyanopropyl (CN) stationary phase (k(CN)) was comparatively evaluated for the three types of soils. The results show that the prediction of K-OC from k(CN) and K-OW is only applicable to some specific types of soils. The results obtained in the present study proved that the SCLC method is appropriate for the K-OC prediction for different types of soils, however the applicability of using hydrophobic parameters to predict K-OC largely depends on the properties of soil concerned. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of methanol of low concentration on adsorption and leaching of atrazine and tebuconazole was studied in this paper. The adsorption coefficients and the retardation factors (R-m) of pesticides on EUROSOIL 3# log-linearly decreased as volumetric fraction of methanol (f(c)) was increased in the binary solvent mixtures of methanol and water. These data are consistent with solvophobic theory formerly outlined for describing the adsorption and transport of hydrophobic organic chemicals from mixed solvents. Nevertheless, the adsorption of these pesticides in soil-water system slightly increased when the soil was pre-washed with methanol in comparison with that pre-washed with water (pure water system). Furthermore, their adsorption coefficients were still higher in binary solvent systems with methanol of very low concentrations, i.e. f(c) < 0.03 for atrazine and f(c) < 0.01 for tebuconazole, than those in pure water system. The adsorption coefficients (logK(w)) of atrazine and tebuconazole predicted by solvophobic theory were 0.5792 and 1.6525, respectively, and their experimental logK(w) were 0.3701 and 1.6275 in pure water system. Obviously, the predicted log K-w of the two pesticides was higher than the experimental log K-w in pure water system. The predicted K-w and the retardation factor (R-w) in pure water system by solvophobic theory are thus possibly inaccurate. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retention factors (k) of 104 hydrophobic organic chemicals (HOCs) were measured in soil column chromatography (SCC) over columns filled with three naturally occurring reference soils and eluted with Milli-Q water. A novel method for the estimation of soil organic partition coefficient (K-oc) was developed based on correlations with k in soil/water systems. Strong log K-oc versus log k correlations (r>0.96) were found. The estimated K-oc values were in accordance with the literature values with a maximum deviation of less than 0.4 log units. All estimated K-oc values from three soils were consistent with each other. The SCC approach is promising for fast screening of a large number of chemicals in their environmental applications. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A soil column chromatographic method was developed to measure the capacity factors (k') of pesticides, in which soil acted as a stationary phase and methanol-water mixture as an eluent. The k' values of eight pesticides, including three insecticides (methiocarb, azinphos-methyl, fenthion), four fungicides (triadimenol, fuberidazole, tebuconazole, pencycuron), and one herbicide (atrazine), were found to be well fitted to a retention equation, ln k'=ln k(w)'-S-phi. Due to similar interactions of solutes with soil and solvent in both sorption determination and retention experiment, log k' has a good linear correlation with log K-oc for the eight pesticides from different classes, in contrast with poor correlation between log k' from C-18 column and log K-oc. So the method provides a tool for rapid estimation of K-oc from experimental k'. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adsorption and desorption coefficients of atrazine, methiocarb and simazine on a sandy loam soil were measured in this study with soil column liquid chromatographic (SCLC) technique. The adsorption and desorption data of all the three pesticides followed Freundlich isotherms revealing the existence of hysteresis. In comparing with other methods, SCLC method showed some characteristics such as rapidity, online and accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of methanol in methanol-water mixed eluents on the capacity factor (P), an important parameter which could depict leaching potential of hydrophobic organic chemicals (HOCs) in soil leaching column chromatography (SLCC), was investigated. Two reference soils, GSE 17201 obtained from Bayer Landwirtschaftszentrum, Monheim, Germany and SP 14696 from LUFA, Spencer, Germany, were used as packing materials in soil columns, and isocratic elution with methanol-water mixtures at different volume fractions of methanol (phi) were tested. Shortterm exposure of the column (packed with the GSE 17201 soil) to the eluents increased solute retention by a certain (23% log-unit) degree evaluated through a correlation with the retention on the same soil column but unpreconditioned by methanol-containing eluents. Long-term exposure of soil columns to the eluents did not influence the solute retention. A log-linear equation, log k' = log k'(w) - Sphi, could well and generally describe the retention of HOCs in SLCC. For the compounds of homologous series, logk'(w), had good linear relationship with S, indicating the hydrophobic partition mechanism existing in the retention process. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The capacity factors of a series of hydrophobic organic compounds (HOCs) were measured in soil leaching column chromatography (SLCC) on a soil column, and in reversed-phase liquid chromatography on a C-18 column with different volumetric fractions (phi) of methanol in methanol-water mixtures. A general equation of linear solvation energy relationships, log(XYZ) = XYZ(0) + mV(1)/100 + spi* + bbeta(m) + aalpha(m), was applied to analyze capacity factors (k'), soil organic partition coefficients (K-oc) and octanol-water partition coefficients (P). The analyses exhibited high accuracy. The chief solute factors that control log K-oc, log P, and log k' (on soil and on C-18) are the solute size (V-1/100) and hydrogen-bond basicity (beta(m)). Less important solute factors are the dipolarity/polarizability (pi*) and hydrogen-bond acidity (alpha(m)). Log k' on soil and log K-oc have similar signs in four fitting coefficients (m, s, b and a) and similar ratios (m:s:b:a), while log k' on C-18 and log P have similar signs in coefficients (m, s, b and a) and similar ratios (m:s:b:a). Consequently, log k' values on C-18 have good correlations with log P (r > 0.97), while log k' values on soil have good correlations with log K-oc (r > 0.98). Two K-oc estimation methods were developed, one through solute solvatochromic parameters, and the other through correlations with k' on soil. For HOCs, a linear relationship between logarithmic capacity factor and methanol composition in methanol-water mixtures could also be derived in SLCC. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The soil organic partition coefficient (K-oc) is one of the most important parameters to depict the transfer and fate of a chemical in the soil-water system. Predicting K-oc by using a chromatographic technique has been developing into a convenient and low-cost method. In this paper, a soil leaching column chromatograpy (SLCC) method employing the soil column packed with reference soil GSE 17201 (obtained from Bayer Landwirtschaftszentrum, Monheim, Germany) and methanol-water eluents was developed to predict the K-oc of hydrophobic organic chemicals (HOCs), over a log K-oc range of 4.8 orders of magnitude, from their capacity factors. The capacity factor with water as an eluent (k(w)') could be obtained by linearly extrapolating capacity factors in methanol-water eluents (k') with various volume fractions of methanol (phi). The important effects of solute activity coefficients in water on k(w)' and K-oc were illustrated. Hence, the correlation between log K-oc and log k(w)' (and log k') exists in the soil. The correlation coefficient (r) of the log K-oc vs. log k(w)' correlation for 58 apolar and polar compounds could reach 0.987, while the correlation coefficients of the log K-oc-log k' correlations were no less than 0.968, with phi ranging from 0 to 0.50. The smaller the phi, the higher the r. Therefore, it is recommended that the eluent of smaller phi, such as water, be used for accurately estimating K-oc. Correspondingly, the r value of the log K-oc-log k(w)' correlation on a reversed-phase Hypersil ODS (Thermo Hypersil, Kleinostheim, Germany) column was less than 0.940 for the same solutes. The SLCC method could provide a more reliable route to predict K-oc indirectly from a correlation with k(w)' than the reversed-phase liquid chromatographic (RPLC) one.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A twin-shaped constructed wetland (CW) comprising a vertical flow (inflow) chamber with Cyperus alternifolius followed by a reverse-vertical flow (outflow) chamber with Villarsia exaltata was assessed for decontamination of artificial wastewater polluted by heavy metals. After application of Cd, Cu, Pb, Zn over 150 days, together with Al and Mn during the final 114 days, no heavy metals with the exception of Mn could be detected in either the drainage zone at the bottom, shared by both chambers, or in the effluent. The inflow chamber was, therefore, seen to be predominantly responsible for the decontamination process of more toxic metal species with final concentrations far below WHO drinking-water standards. About one-third of the applied Cu and Mn was absorbed, predominantly by lateral roots of C. alternifolius. Lower accumulation levels were observed for Zn (5%), Cd (6%), Al (13%). and Pb (14%). Contents of Cd, Cu, Mn, and Zn in soil were highest in top layer, while Al and Pb were evenly distributed through the whole soil column. Metal species accumulating mainly in the top layer can be removed mechanically. A vertical flow CW with C. alternifolius is an effective tool in phytoremediation for treatment of water polluted with heavy metals. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为探明碎石存在于田间土壤中如何改变土壤水分运移通道、影响土壤水分运动,揭示田间含碎石土壤水分运动的复杂过程,采用便携式针头降雨器在铜川崾岘梁修建的临时小区进行模拟降雨实验,测定含碎石浅层土体的入渗和水分再分布过程,采用土壤水分运动通量法计算浅层土体不同深度各截面面积的水量在雨后不同时间段的变化,分析含碎石土壤再分布特征及碎石含量对浅层土体入渗和水分再分布的影响。结果表明:碎石有利于田间浅层土壤入渗和蓄存;室内较田间测定的含碎石土壤入渗率小一个数量级以上;降雨后较短时段,碎石含量相对高的林地小区的浅层土体水分在降雨停止后呈增加趋势,表现了蓄水过程,碎石含量较低的撂荒地则表现了释水过程;降雨后较长时段,多数小区浅层土体(0-30 cm)水量变化呈现了"排水-存储交换-排水"过程,少数小区仅呈现了"排水"过程;雨后16 h左右的土体各截面面积的水量与碎石含量呈现了以直线y=0.4873为轴对称的递增和递减的指数为1/2的幂函数关系,说明碎石对黄土区典型土石区土体水分运动具有促进和阻滞双面影响。本文的研究结果可为含碎石土壤的水分利用及水分循环提供参考。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用土柱法研究了不同PAA施入量对3种黄土高原主要土壤类型(黄绵土、黑垆土和塿土)的持水性能、土壤饱和导水率和土壤蒸发量的影响,以进一步阐明PAA的保水和蒸发作用。结果表明,施入PAA提高了土壤的持水性能。在未加入PAA之前黑垆土的持水性能最低,塿土的最高,黄绵土的次之;加入PAA后,黑垆土的持水能力显著增加,几乎为对照的2倍,塿土和黄绵土也都比对照高。土壤的供水能力随PAA用量的增加而增强,不同土壤类型之间表现为:塿土>黑垆土>黄绵土。未加入PAA时,3种土壤饱和导水率大小为:塿土>黑垆土>黄绵土;加入PAA后,3种土壤的饱和导水率都降低,且基本随PAA用量的增加而降低。在一定水分条件下,PAA的施入提高了土壤的抗蒸发性能,随PAA用量的增加,塿土和黑垆土的土壤蒸发量增加,但都低于对照,而黄绵土的土壤蒸发量随PAA用量的增加而降低。其中施PAA54.5 mg/kg的塿土、黑垆土和施PAA225.8 mg/kg的黄绵土与对照相比,土壤蒸发量分别减少了44.0%,44.6%和30.6%。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在水分亏缺和正常供水(土壤含水量分别维持在田间持水量的40%~45%和75%~80%)两种水分条件下,采用土柱实验方法,研究了玉米杂交种户单四号(F1)及其父本803(♂)、母本天四(♀)根系剖面分布对水分亏缺的响应。结果表明:水分亏缺除了对父本的总根重无显著影响之外,使杂交种和母本的总根重以及3个品种的总根长和根系总表面积均显著下降。在剖面分布上,水分亏缺显著降低了杂交种和母本在表层土层中的根重和根表面积,使杂交种在表层和中层土层中的根长以及亲本在深层土层中的根长显著下降。可见,玉米杂交种响应中度干旱胁迫的形态学变化是减少上层干土中的根系生长,而增加深层土层中根系的相对生长,即其深层根系分布占总根系的比重较亲本高,这种根系剖面分布的优化导致杂交种较高的生物量积累和水分利用效率。