103 resultados para sine fatigue (cyclic loading)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
本文针对发展新一代步兵战车复合材料履带板所面临的关键问题,结合其实际受载特点,设计制备了冲击疲劳实验加载装置,并着重从实验设计及机理分析上进行细致深入的探索,揭示了Al_2O_3/LC_4复合材料冲击疲劳破坏的微观过程和机理。首先分别对SiC_P/LC_4、Al_2O_(3P)/LC_4 及基体 LC_4 进行了显微组织的观察与定量分析,并对其拉伸、三点弯曲破坏过程进行了在位观察,结合其断裂形貌的观察与分析,揭示出颗粒增强铝基复合材料断裂破坏的根本原因是颗粒的聚集及脆性相在晶界的严重偏聚。针对这一结论,给材料制备单位提出工艺改进意见。对工艺改进后制备的复合材料进行常规力学性能的测试,结果表明,其拉伸性能明显优于改进前制备的相应材料。为了进行冲击疲劳的实验研究,在分析步兵战车履带板实际受载特点的基础上,自行设计制备了冲击疲劳实验的加载装置。主要包括主体框架和测量系统,前者与小型振动系统配合使用可以实现冲击能量为 0.3J、冲击频率为 1Hz、冲击速度为 0.6m/s 的多次冲击实验;后者可以准确记录下任意时刻的冲击载荷波形及冲击疲劳载荷的循环数。为了考察颗粒与加载速率对复合材料疲劳机理的影响,实验研究了 Al_2O_3/LC_4 复合材料和 LC_4 纯基体材料在冲击疲劳和常规疲劳过程中裂纹的扩展过程及扩展速率。综合结果发现:与LC_4纯基体材料相比,Al_2O_3/LC_4复合材料疲劳裂纹扩展得更为迅速。复合材料中,由于颗粒的加入,两种疲劳方式下袭纹都发生严重偏转;裂纹经过颗粒时,多数是绕过,少数是切过颗粒;冲击疲劳裂纹扩展速率明显高于常规疲劳裂纹扩展速率。纯基体材料中,两种加载方式下,裂纹基本都以穿晶的方式扩展,裂纹常常表现为小锯齿状;冲击疲劳裂纹尖端的塑性变形程度比常规疲劳更大;冲击疲劳裂纹比常规疲劳裂纹更曲折,表现出多尺度的锯齿状(Zig-Zag)特征;冲击疲劳裂纹扩展速率高于常规疲劳的裂纹扩展速率。在基本实验的基础上,进一步对断口及裂纹扩展途径进行了微观观察和定量分析,最后综合全文的实验和统计结果,讨论了颗粒增强铝基复合材料的冲击疲劳机理。复合材料疲劳裂纹扩展速率的提高主要与裂纹的偏转有关,裂纹更倾向于沿着颗粒与基体的界面扩展;两种材料的疲劳裂纹扩展速率均随加载速率的增加而增加,呈现加载速率的反作用。加载方式的改变,一方面,由于冲击情况下载荷持续时间降低,使裂纹扩展速率降低;另一方面,加载速率的提高使得断裂韧性值降低,材料变脆,裂纹扩展速率升高。这两个方面相互影响,相互竞争,决定实际的裂纹扩展速率。两种材料中,不同加载速率下的疲劳裂纹扩展的微观机制基本一致,没有明显的本质区别。
Resumo:
Axisymmetric notched bars with notch roots of large and small radii were tested under large strain cyclic loading. The main attention is focused on the fracture behaviour of steels having cycles to failure within the range 1-100. Our study shows that a gradual transition from a static ductile nature to one of fatigue cleavage can be observed and characterized by the Coffin-Manson formula in a generalized form. Both the triaxial tensile stress within the central region of specimens and static damage caused by the first increasing load have effects on the final failure event. A generalized cyclic strain range parameter DELTAepsilon is proposed as a measure of the numerous factors affecting behaviour. Fractographs are presented to illustrate the behaviour reported in the paper.
Resumo:
The present work investigates the effects of cyclic fatigue loading on the residual properties of an injection-molded composite, carbon-fiber-reinforced poly(phenylene ether ketone) (CF/PEK-C), and damage development in this material under fatigue lending. Test specimens, which had been conditioned to various preselected fatigue damage stages, were measured for their residual properties. The results indicated that cyclic fatigue loading alters the constitutive behavior of the injection-molded composite, especially in the non-linear portion of the stress/strain curve. The residual strength decreases with increase in the number of fatigue cycles as a consequence of the accumulation of fatigue damage, which is dominated by the growth of microcracks. While the residual modulus increases slightly with cyclic fatigue loading, this is probably due to the oriented hardening resulting from creep deformation which is induced during cyclic loading. (C) 1997 Elsevier Science Limited.
Resumo:
This paper presents the results of a series of centrifuge model tests performed to study the behavior of suction bucket foundations for a tension leg platform in the Bohai Bay, China. The target lateral loadings were from ice-sheet-induced structural vibrations at a frequency of 0.8-1.0 Hz. The results indicate that excess pore water pressures reach the highest values within a depth of 1.0-1.5 in below the mud line. The pore pressures and the induced settlement and lateral displacement increase with the amplitude of the cyclic loading. Two failure modes were observed: liquefaction in early excitations and settlement-induced problems after long-term excitations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
A series of static and cyclic-static tri-axial compression tests under consolidated-undrained conditions are carried out to study the characteristics of post-cyclic strength of the undisturbed and the remolded samples of marine silty clay. It is found that the post-cyclic monotonic strength decreases if the cyclic strain or pore pressure is over a certain value. The maximum degradation is 10% for undisturbed samples while 70% for remolded ones. The relationship between normalized undrained shear strength and apparent overconsolidation ratio, which is determined by the excess pore pressure induced by cyclic loading, is also established. Static consolidated-undrained tests on overconsolidated remolded samples are also performed. It is proposed that the static consolidated-undrained tests may be substituted for the cyclic-static consolidated-undrained tests if the post-cyclic strength degradation of remolded silty clay is needed to be evaluated simply.
Resumo:
前言吸力式基础的应用起源于欧洲,最初用作浮动结构的稳固基础,1994年欧洲Europipe16/-11E第一次将海洋采油平台建在吸力式基础上[1].……
Resumo:
在3种不同围压下进行了一系列重塑粉质黏土的静三轴和动-静三轴不排水剪切试验,得到了不同动应力水平条件下粉质黏土的孔压、动应变和不排水剪切强度值.通过对土样的不排水强度、孔压和动应变的无量纲化处理,确定了周期荷载作用后粉质黏土的不排水强度比与动载引起的孔压比和动应变比之间的相关关系.试验结果表明:粉质黏土在周期荷载作用后的不排水强度衰减程度取决于动载引起的动应变比值和孔压比值.当周期荷载引起的动应变比值小于0.1时,孔压比增长较快,土样的不排水强度几乎没有衰减;当动应变比大于0.1时,孔压比增长变慢,土样的不排水强度明显衰减;当动应变比值接近1时,孔压比值达到0.9,土样的不排水强度衰减程度约达到55 %.
Resumo:
An apparatus of low-temperature controlling for fatigue experiments and its crack measuring system were developed and used for offshore structural steel A131 under conditions of both low temperature and random sea ice. The experimental procedures and data processing were described, and a universal random data processing software for FCP under spectrum loading was written. Many specific features of random ice-induced FCP which differed with constant amplitude FCP behaviours were proposed and temperature effect on ice-induced FCP was pointed out with an easily neglected aspect in designing for platforms in sea ice emphasized. In the end, differences of FCP behaviours between sea ice and ocean wave were presented.
Resumo:
The LY12-cz aluminium alloy sheet specimens with a central hole were tested under constant amplitude loading, Rayleigh narrow band random loading and a typical fighter broad band random loading. The fatigue life was estimated by means of the nominal stress and the Miner's rule. The stress cycles were distinguished by the rainflow count, range count and peak value count, respectively. The comparison between the estimated results and the test results was made. The effects of random loading sequence and small load cycles on fatigue life were also studied.
Resumo:
Flexural fatigue tests were performed on an injection-moulded glass-fiber reinforced blend of polyphenylene ether ketone and polyphenylene sulfide composite using four-point bending at a series of fixed mean stress levels with varying stress amplitude. Attention was given to identifying the effects of mean stress and stress amplitude on the fatigue life and failure mechanisms. It was found that the fatigue life of the studied material decreased sharply with increasing stress amplitude at a constant mean stress level and also decreased at a fixed stress amplitude with increasing mean stress. However, analyses of the fatigue data and failure behaviour reveal that, for the studied material, fatigue failure mechanisms depend on the relative importance of mean stress and stress amplitude. At a mean stress level of 80% ultimate flexural strength, the failure results from accumulation of creep strain, while at mean stress levels of 40%, 50% and 60% ultimate flexural strength, the magnitude of stress amplitude influences the type of failure mechanism. As stress amplitude is reduced, the fatigue failure mechanism changes from matrix yielding dominated to crack growth dominated fracture.
Resumo:
To investigate the low temperature fatigue crack propagation behavior of offshore structural steel A131 under random ice loading, three ice failure modes that are commonly present in the Bohai Gulf are simulated according to the vibration stress responses induced by real ice loading. The test data are processed by a universal software FCPUSL developed on the basis of the theory of fatigue crack propagation and statistics. The fundamental parameter controlling the fatigue crack propagation induced by random ice loading is determined to be the amplitude root mean square stress intensity factor K-arm. The test results are presented on the crack propagation diagram where the crack growth rate da/dN is described as the function of K-arm. It is evident that the ice failure modes have great influence on the fatigue crack propagation behavior of the steel in ice-induced vibration. However, some of the experimental phenomena and test results are hard to be physically explained at present. The work in this paper is an initial attempt to investigate the cause of collapse of offshore structures due to ice loading.
Resumo:
A simple probabilistic model for predicting crack growth behavior under random loading is presented. In the model, the parameters c and m in the Paris-Erdogan Equation are taken as random variables, and their stochastic characteristic values are obtained through fatigue crack propagation tests on an offshore structural steel under constant amplitude loading. Furthermore, by using the Monte Carlo simulation technique, the fatigue crack propagation life to reach a given crack length is predicted. The tests are conducted to verify the applicability of the theoretical prediction of the fatigue crack propagation.
Resumo:
Very-High-Cycle Fatigue (VHCF) is the phenomenon of fatigue damage and failure of metallic materials or structures subjected to 108 cycles of fatigue loading and beyond. This paper attempts to investigate the VHCF behavior and mechanism of a high strength low alloy steel (main composition: C-1% and Cr-1.5%; quenched at 1108K and tempered at 453K). The fractography of fatigue failure was observed by optical microscopy and scanning electron microscopy. The observations reveal that, for the number of cycles to fatigue failure between 106 and 4108 cycles, fatigue cracks almost initiated in the interior of specimen and originated at non-metallic inclusions. An “optical dark area” (ODA) around initiation site is observed when fatigue initiation from interior. ODA size increases with the decrease of fatigue stress, and becomes more roundness. Fracture mechanics analysis gives the stress intensity factor of ODA, which is nearly equivalent to the corresponding fatigue threshold of the test material. The results indicate that the fatigue life of specimens with crack origin at the interior of specimen is longer than that with crack origin at specimen surface. The experimental results and the fatigue mechanism were further analyzed in terms of fracture mechanics and fracture physics, suggesting that the primary propagation of fatigue crack within the fish-eye local region is the main characteristics of VHCF.
Resumo:
A cyclic bending experiment is designed to investigate the interface fracture behaviour of a hard chromium coating on a ductile substrate with periodic surface hardened regions. The unique deflection pattern of the vertical cracks after they run through the coating and impinge at the interface is revealed experimentally. A simple double-layer elastic beam model is adopted to investigate the interfacial shear stresses analytically. A FE model is employed to compute the stresses of the tri-phase structure under a single round of bending, and to investigate the effect of the loading conditions on the deflection pattern of the vertical cracks at the interface. (C) 2008 Elsevier Ltd. All rights reserved.