168 resultados para separation mechanism

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The migration mechanism of ionizable compounds in capillary electrochromatography (CEC) is more complicated than in high performance liquid chromatography (HPLC) due to the involvement of electrophoresis and the second chemical equilibrium. The separation mechanism of ionizable compounds in CEC has been studied theoretically. The electrochromatographic capacity factors of ions (k *) in CEC and in the pressurized CEC are derived by phenomenological approach. The influence of pH, voltage, pressure on k* is discussed. in addition, the k * of weak acid and weak base are derived based on acid-base equilibrium and the influence of pH on k * is studied theoretically.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Separation of small peptides on ion-exchange capillary electrochromatography (IE-CEC) with strong cation-exchange packing (SCX) as stationary phase was investigated. It was observed that the number of theoretical plates for small peptides varied from 240 000 to 460 000/m, and the relative standard deviation for t(0) and the migration time of peptides were less than 0.57% and 0.27%, respectively for ten consecutive runs. Unusually high column efficiency has been explained by the capillary electrophoretic stacking and chromatofocusing phenomena during the injection and separation of positively charged peptides. The sample buffer concentration had a marked effect on the column efficiency and peak area of the retained peptides. The influences of the buffer concentration and pH value as well as the applied voltage on the separation were investigated. It has been shown that the electrostatic interaction between the positively charged peptides and the SCX stationary phase played a very important role in IE-CEC, which provided the different separation selectivity from those in the capillary electrophoresis and reversed-phase liquid chromatography. A fast separation of ten peptides in less than 3.5 min on IE-CEC by adoption of the highly applied voltage was demonstrated. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cohesive zone characterizations of the interface between metal film and ceramic substrate at micro- and nano-scales are performed in the present research. At the nano-scale, a special potential for special material interface (Ag/MgO) is adopted to investigate the interface separation mechanism by using MD simulation, and stress-separation relationship will be obtained. At the micro-scale, peeling experiment is performed for the Al film/Al2O3 substrate system with an adhesive layer at the interface. Adhesive is a mixture of epoxy and polyimide with mass ratio 1:1, by which a brittle cohesive property is obtained. The relationships between energy release rate, the film thickness and the adhesive layer thickness are measured during the steady-state peeling. The experimental result has a similar trend as modeling result for a weak adhesion interface case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellulose hollow fiber membranes (CHFM) were prepared using a spinning solution containing N-methylmorpholine-N-oxide as solvent and water as a nonsolvent additive. Water was also used as both the internal and external coagulant. It was demonstrated that the phase separation mechanism of this system was delayed demixing. The CHFM was revealed to be homogeneously dense structure after desiccation. The gas permeation properties of CO2, N-2, CH4, and H-2 through CHFM were investigated as a function of membrane water content and operation pressure. The water content of CHFM had crucial influence on gas permeation performance, and the permeation rates of all gases increased sharply with the increase of membrane water content. The permeation rate of CO2 increased with the increase of operation pressure, which has no significant effect on N-2, H-2, and CH4. At the end of this article a detailed comparison of gas permeation performance and mechanism between the CHFM and cellulose acetate flat membrane was given. (C) 2003 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To clarify the mechanism of organic-inorganic hybrid membrane formation by phase-inversion method, the thermodynamical and theological properties of PSF/TiO2 casting solution were investigated by the viscosity measurement and the triangle phase diagram, respectively. TiO2 introduction decreased the non-solvent tolerance of casting solution with non-solvent 20% ethanol aqueous solution, which caused thermodynamic enhancement of phase separation, and also resulted in the change of theological properties from Newtonian fluid to non-Newtonian fluid and the viscosity increase of casting solution, which induced rheological hindrance in demixing process

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One-dimensional hexagonal Ba2CIF3 microrods with highly uniform morphology and size have been successfully synthesized via a facile solvothermal method at a low temperature (160 degrees C). X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the samples. The synthesis process, based on a phase-transfer and separation mechanism, allows the control of properties such as particle size and shape in low dispersity by bonding the surfactant oleic acid to the crystal surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extraction kinetics of thorium(IV) with primary amine N1923 in sulfate media has been investigated by a constant interfacial cell with laminar flow. Studies of interfacial tension and effects of the stirring rate, temperature, and specific interfacial area on mass transfer rate show that the most probable reaction zone takes place at the liquid-liquid interface. According to the experimental data correlated as a function of the concentration of the relevant species involved in the extraction reaction, the rate equation of extracting thorium has been obtained as follows: -d[Th(IV)]((o))/dt = 10(-3.10)center dot[Th(IV)](0.89)center dot[(RNH3)(2)SO4](0.74).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a kind of novel green solvent, Room Temperature Ionic Liquids (RTILs) have been paid ever-increasing attentions in RTIL-based extraction for metal separation, since they have many unique proper-ties, such as non-volatile and non-flammable. The progress of that is mainly composed of the partition properties, mechanisms, defects, overcome methods and forecasts of the processes on the environmental analytical chemistry, has been reviewed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extraction kinetics of Sc, Y, La and Gd(III) from the hydrochloric acid medium using Cyanex 302 (hereafter HL) in heptane solution have been measured by the constant interfacial cell with laminar flow. Reaction regions are explored at liquid-liquid interface. Extraction regimes are deduced to be diffusion-controlled for Sc(Ill) and mixed controlled for Y, La and Gd(Ill). Extraction mechanisms are discussed according to the dimeric model of Cyanex 302 in non-polar solution. From the temperature dependence of rate measurement, the values of E-a, Delta H-+/-, Delta S-+/- and Delta G(300)(+/-) are calculated and it is found that the absolute values of these parameters keep crescent trend for Sc, Y, La and Gd(III). At the same time, it is found that it can easily achieve the mutual separation among the Sc, Y and La(III) with kinetics extraction methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel mode of capillary electrochromatography (CEC), called dynamically modified strong cation-exchange CEC (DMSCX-CEC), is described in this paper. A column packed with a strong cation-exchange (SCX) packing material was dynamically modified with a long-chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added to the mobile phase. CTAB ions were adsorbed onto the surface of the SCX packing material, and the resulting hydrophobic layer on this packing was used as the stationary phase. Using the dynamically modified SCX column, neutral solutes were separated with the CEC mode. The highest number of theoretical plates obtained was about 190 000/m, and the relative standard deviations (RSD's) for migration times and capacity factors of alkylbenzenes were less than 1.0% and 2.0% for five consecutive runs, respectively. The effects of CTAB and methanol concentrations and the pH value of the mobile phase on the electroosmotic flow and the separation mechanism were investigated. Excellent simultaneous separation of the basic and neutral solutes in DMSCX-CEC with a high-pH mobile phase was obtained, A mixture containing the acidic, basic, and neutral compounds was well separated in this mode with a low-pH mobile phase; however, peak tailing for basic compounds was observed in this mobile phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel mode of capillary electrochromatography (CEC), called dynamically modified silica-capillary electrochromatography, is described in this paper. The column packed with bare silica was dynamically modified with long chain quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), which was added into the mobile phase. CTAB ions were adsorbed onto the surface of bare silica, and the resulted hydrophobic layer on the silica gel was used as the stationary phase; Using the dynamically modified silica column, neutral solutes were separated by CEC. The highest number of theoretical plates obtained was about 71 500/m and the relative standard deviations for t(0) and capacity factor of toluene were 4.7% and 4.9% for 20 consecutive runs, respectively. The separation mechanism of neutral solutes and the influence of mobile phase composition on the separation was investigated. The separation of nitrogen-containing solutes was carried out with this mode and the peak tailing of basic solute was effectively eliminated because the adsorption of basic solute on silica was blocked by the preferred adsorption of CTAB. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ytterbium(III) extraction kinetics and mechanism with mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex272) and 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (P507) dissolved in heptane have been investigated by constant interfacial cell with laminar flow. The effects of the stirring rate, temperature, extractant concentration, and pH on the extraction with mixtures of Cyanex272 and P507 have been studied. The results are compared with those of the system with Cyanex272 or P507 alone. It is concluded that the Yb(III) extraction rate is enhanced with mixtures extractant of Cyanex272 and P507 according to their values of the extraction rate constant, which is due to decreasing the activation energy of the mixtures. At the same time, the mixtures exhibits no synergistic effects for Y(III), which provides better possibilities for Yb(III) and Y(III) separations at a proper conditions than anyone alone. Moreover, thermodynamic extraction separation Yb(III) and Y(III) by the mixtures has been discussed, which agrees with kinetics results. Extraction rate equations have also been obtained, and through the approximate solutions of the flux equation, diffusion parameters and thickness of the diffusion film have been calculated.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The extraction equilibrium data of sulphuric acid and scandium(III) with bis(2,4,4-trimethylpentyl)phosphinic acid (H[BTMPP]) from sulphuric acid solutions have been obtained. There are two extraction mechanisms of scandium(III) with H[BTMPP] at different

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic-plastic solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fundamental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory. Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the MSG theory and in the Fleck-Hutchinson strain gradient plasticity theory is obtained.