27 resultados para sensitization

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitization mechanisms of Yb3+ to Tm3+ for the blue upconversion luminescence in fluorophosphate glass were studied. Two different mechanisms exist in the sensitization. One is the sequential sensitization that Tm3+ is excited from H-3(6) to (1)G(4) through absorbing three photons transferred from Yb3+ one by one. Another is the cooperative sensitization that two Yb3+ ions form a couple cluster firstly, and then the couple cluster Yb3+ ions transfer their energy to Tm3+ and excite it to (1)G(4). With the increment of the concentration of Yb3+ ions, the sequential sensitization becomes weak and the cooperative sensitization becomes intense, and the transformation trend of sensitization mechanism with the increment of Yb3+ concentration can be clarified by the introduction of Th3+ ions in the glass. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four types of sensitized luminescence of Dy3+ are reported: (1) by a host having a broad-band spectrum as in Na3Y0.99Dy0.01(VO4)(2); (2) by a sensitizer having a broad-band spectrum as in Ca2B2O5:Dy3+, Bi3+; (3) by a sensitizer having a narrow-band spectrum as in Mg2Gd7.9Dy0.1(SiO4)(6)O-2; (4) by a sensitizer having a broad-band spectrum and energy migration as in Gd compounds such as Ca1.96Pb0.04Gd7.9Dy0.1(SiO4)(6)O-2. The luminescent intensity of Dy3+ can be enhanced in these ways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report experimental and theoretical studies of nonvolatile photorefractive holographic recording in LiNbO3:Cu:Ce crystals with two illumination schemes: (1) UV light for sensitization and a red interfering pattern for recording and (2) blue light for sensitization and a red pattern for recording. The results show that the oxidized LiNbO3:Cu:Ce crystals can provide high, persistent refractive-index modulation with weak lightinduced scattering. The optimal working conditions and the prescription for doping and oxidation-reduction processing that yields the maximum refractive-index modulation are discussed. (C) 2000 Optical Society of America OCIS codes: 050.7330, 190.5330, 090.2900.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorescence of Tm3+/Er3+ codoped bismuth-silica (BS) glasses and the sensitization of Ce3+ are investigated. It shows that Ce3+ codoping with Tm3+/Er3+ in BS glasses results in a quenching of Tm3+ ion emission from F-3(4) to the H-3(6) level. Consequently, the 1.47 mu m emission occurs after the population inversion between the H-3(4) and F-3(4) levels. Furthermore, the codoped glasses show the broad emission spectra over the whole S and C bands with full-width at half-maximum (FWHM) up to about 119nm, as it combines 1.55 mu m emission band of Er3+ with 1.47 mu m emission band of Tm3+ under 800nm excitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By sensitizing with 514 nm green light, 488 nm blue light and 390 nm ultraviolet light, respectively, recording with 633 nm red light, effect of wavelength of sensitizing light on holographic storage properties in LiNbO3:Fe:Ni crystal is investigated in detail. It is shown that by shortening the wavelength of sensitizing light gradually, nonvolatile holographic recording properties of oxidized LiNbO3:Fe:Ni crystal is optimized gradually, 390 nm ultraviolet light is the best as the sensitizing light. Considering the absorption of sensitizing light, to obtain the best performance in two-center holographic recording we must choose a sensitizing wavelength that is long enough to prevent unwanted absorptions (band-to-band, etc.) and short enough to result in efficient sensitization from the deep traps. So in practice a trade-off is always needed. Explanation is presented theoretically. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Up-conversion luminescence characteristics under 975 nm excitation have been investigated with Tb3+/Tm3+/Yb3+ triply doped tellurite glasses. Here, green (547 nm: D-5(4) --> F-7(4)) and red (660 nm: D-5(4) --> F-7(2)) up-conversion (UC) luminescence originating from Tb3+ is observed strongly, because of the quadratic dependences of emission intensities on the excitation power. Especially, the UC luminescence was intensified violently with the energy transfer from the Tm3+ ions involves in the Tb3+ excitation. To the Tb3+/Tm3+/Yb3+ triply doped glass system, a novel up-conversion mechanism is proposed as follows: the energy of (3)G(4) level (Tm3+) was transferred to D-5(4) (Tb3+) and the 477-nm UC luminescence of Tm3+ was nearly quenched. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For the Er3+/Yb3+ codoped fluorophosphate glasses, Judd-Ofelt theory is used to analyse the influence of YbF3 as not a sensitizer but an average component on the spectroscopic properties around 1530 nm emission. The double roles of Yb3+, as a sensitizer and as an average component, are discussed. It is found that Yb3+ as an average component contributes to the increase of fluorescence lifetime, and Yb3+ as a sensitizer has the best sensitization when its concentration is 2.4 mol%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Er3+, Yb3+ and Tm3+ codoped fluorophosphate glasses emitting blue, green and red upconversion luminescence at 970 nm laser diode excitation were studied. It was shown that Tm3+ behaves as the sensitizer to Er3+ for the green upconversion luminescence through the energy transfer process: Tm 3+:H-3(4) + Er3+:I-4(15/2) -> Er3+:I-4(9/2) + Tm3+:H-3(6), and for the red upconversion luminescence through the energy transfer process: Tm3+:F-3(4) + Er3+:I-4(11/2) -> TM3+:H-3(6) + Er3+:4 F-9/2. Moreover, Er3+ acts as quenching center for the blue upconversion luminescence of TM3+. The sensitization of Tm3+ to Er3+ depends on the concentration of Yb3+. The intensity of blue, green and red emissions can be changed by adjusting the concentrations of the three kinds of rare earth ions. This research may provide useful information for the development of high color and spatial resolution devices and white light simulation. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal stability, 2 μm fluorescence properties and energy transfer mechanism in Ho3+ doped fluorophosphate glass sensitized by Yb3+ and Tm3+ were investigated. The characteristic temperatures, absorption spectrum and fluorescence spectrum of the glass sample were measured. ΔT calculated from the characteristic temperatures shows that the thermal stability of fluorophosphate glass is better than fluoride glass. According to the absorption spectrum, several spectroscopic parameters of the glass sample, such as Judd-Ofelt parameters and spontaneous transition probability were calculated and compared with other glass hosts. The largest spontaneous transition probability for Ho3+:5 I7&rarr5I8 transition in fluorophosphate glass which is 78.48 s-1 indicates that fluorophosphate glass is an appropriate base glass to achieve 2 m fluorescence. From the fluorescence spectrum of the glass sample, the extremely strong 2.0 μm fluorescence intensity is observed, which is higher than the intensity of 1.8 μm fluorescence, showing that Ho3+ ions sensitized by Yb3+ and Tm3+ is efficient. Meanwhile, the absorption sections and emission sections of Yb3+, Tm3+ and Ho3+ were calculated and the pumping scheme and energy transfer mechanism among Yb3+, Tm3+ and Ho3+ are discussed. The study indicates that Yb-Tm-Ho tri-doped fluorophosphate glass is a significant sensitization glass system under 980 nm excitation for 2 μm applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2.0 μm spectroscopic properties of Er3+/Tm3+/Ho3+ triply-doped fluorophosphate glasses pumped by 808 nm and the energy transfer mechanisms between the three rare earth ions were investigated. J-O theory was used to calculate the parameters of Ho3+ in fluorophosphate glasses. Absorption and emission cross-sections and the gain coefficients were calculated. The obtained lifetime r and spontaneous transition probability Ar of Ho3+:5I7 level were 10.64 ms and 93.95 s-1 respectively. The calculated maximum emission cross-section of 2.0 μm was 9.26×10-21 cm2. The energy transfer analysis indicated that the cross-relaxation of Tm3+ was important and the resonent energy transfer in Er3+&rarrHo3+, Tm3+&rarrHo3+, Er3+&rarrTm3+&rarrHo3+ process was the main channel. The study revealed that the Er3+/Tm3+/Ho3+ triply-doped fluorophosphate glass would be a potential material for 2.0 μm emission because of the efficient sensitization of Er3+ and Tm3+ to Ho3+.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel oxyfluoride glasses are developed with the composition of 30SiO(2)-15Al(2)O(3)-28PbF(2)-22CdF(2)-0.1TmF(3)-xYbF(3) -(4.9-x) AlF3(x = 0, 0.5, 1.0, 1.5, 2.0) in mol fraction. Furthermore, the upconversion luminescence characteristics under a 970nm excitation are investigated. Intense blue, red and bear infrared luminescences peaked at 453nm, 476nm, 647nm and 789nm, which correspond to the transitions of Tm3+: D-1(2) -> F-3(4), (1)G(4) -> H-3(6), (1)G(4) -> F-3(4), and H-3(4) -> H-3(6), respectively, are observed. Due to the sensitization of Yb3+ ions, all the upconversion luminescence intensities are enhanced considerably with Yb3+ concentration increasing. The upconversion mechanisms are discussed based on the energy matching rule and quadratic dependence on excitation power. The results indicate that the dominant mechanism is the excited state absorption for those upconversion emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluorophosphate glasses codoped with Tm3+ and Yb3+ were prepared and their thermal stability, phonon states, and upconversion properties were studied. It is found that the increment of phosphate content is good for the thermal stability but increases the phonon density of states. However, the phonon density of states of these fluorophosphate glasses is very low due to the low phosphate content in their composition. The upconversion luminescence spectra were measured under excitation of 970 nm laser diode, and the intense blue (476 nm) and near infrared (794 nm) emission were simultaneous obtained at room temperature. The sensitizing mechanisms of Yb3+ to Tm3+ for blue and red emission contain both sequential and cooperative sensitization. The near infrared emission is a two-photon upconversion process. These researches suggest that when the phosphate content in the composition is low enough, fluorophosphate glass can be suitable host material of Tm3+ codoped with Yb3+ for blue and near infrared upconversion luminescence. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silica spheres doped with Eu(TTFA)(3) and/or Sm(TTFA)(3) were synthesized by using the modified Stober method. The transmission electron microscope image reveals that the hybrid spheres have smooth surfaces and an average diameter of about 210 nm. Fluorescence spectrometer was used to analyze the fluorescence properties of hybrid spheres. The results show that multiple energy transfer processes are simultaneously achieved in the same samples co-doped with Eu (TTFA)(3) and Sm(TTFA)(3), namely between the ligand and Eu3+ ion, the ligand and Sm3+ ion, and Sm3+ ion and Eu3+, ion. Energy transfer of Sm3+-> Eu3+, in the hybrid spheres leads to fluorescence enhancement of Eu3+ emission by approximately an order of magnitude. The lifetimes of the hybrid spheres were also measured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cost-effective organic sensitizers will play a pivotal role in the future large-scale production and application of dye-sensitized solar cells. Here we report two new organic D-pi-A dyes featuring electron-rich 3,4-ethylenedioxythiophene- and 2,2'-bis(3,4-ethylenedioxythiophene)-conjugated linkers, showing a remarkable red-shifting of photocurrent action spectra compared with their thiophene and bithiophene counterparts. On the basis of the 3-f{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bis(3,4-ethylenedioxythiophene)-5-yl}2-cyanoacrylic acid dye, we have set a new efficiency record of 7.6% for solvent-free dye-sensitized solar cells based on metal-free organic sensitizers. Importantly, the cell exhibits an excellent stability, keeping over 92% of its initial efficiency after 1000 h accelerated tests under full sunlight soaking at 60 degrees C. This achievement will considerably encourage further design and exploration of metal-free organic dyes for higher performance dye-sensitized solar cells.