68 resultados para seismic monitoring
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In order to study the earthquake recurrence and the characteristics of earthquake series, rupture tests of rock samples and plexiglass samples were made. On rock samples, a number of acoustic emission (AE) and strain measuring points were deployed; the load was one side direct shear. The variation characteristics of AE and strain at different detecting points around the extra large fracture were observed and studied. On plexiglass samples, a series of inclined cracks were prefabricated by a small-scale compressive testing machine. The samples were then loaded on a shockproof platen, when the samples were loaded, the stress intensity factor (SIF) was determined by the laser interferometric technique and shadow optical method of caustics. The fracture conditions such as material toughness around the extra large fracture were also studied. From those experimental results and the theory of fracture mechanics, the earthquake recurrence period and the trend of post-seismic development were studied.
Resumo:
Until quite recently our understanding of the basic mechanical process responsible for earthquakes and faulting was not well known. It can be argued that this was partly a consequence of the complex nature of fracture in crust and in part because evidence of brittle phenomena in the natural laboratory of the earth is often obliterated or obscured by other geological processes. While it is well understood that the spatial and temporal complexity of earthquakes and the fault structures emerge from geometrical and material built-in heterogeneities, one important open question is how the shearing becomes localized into a band of intense fractures. Here the authors address these questions through a numerical approach of a tectonic plate by considering rockmass heterogeneity both in microscopic scale and in mesoscopic scale. Numerical simulations of the progressive failure leading to collapse under long-range slow driving forces in the far-field show earthquake-like rupture behavior. $En Echelon$ crack-arrays are reproduced in the numerical simulation. It is demonstrated that the underlying fracturing induced acoustic emissions (or seismic events) display self-organized criticality------from disorder to order. The seismic cycles and the geometric structures of the fracture faces, which are found greatly depending on the material heterogeneity (especially on the macroscopic scale), agree with that observed experimentally in real brittle materials. It is concluded that in order to predict a main shock, one must have extremely detailed knowledge on very minor features of the earth's crust far from the place where the earthquake originated. If correct, the model proposed here seemingly provides an explanation as to why earthquakes to date are not predicted so successfully. The reason is not that the authors do not understand earthquake mechanisms very well but that they still know little about our earth's crust.
Resumo:
A comprehensive strength monitoring system used on a fixed jacket platform is presented in this paper. The long-term monitoring of W-11-4A platform achieved. Structural responses (strain and acceleration) at selected locations, as well as associated environmental parameters, have been obtained. The emphasis of the paper is placed on the system design, and the instrumentation and operation methodology employed in the monitoring of the structural responses. The performance of the system and the characteristic results obtained during its 13-month operation are also summarized.
Resumo:
An analytical solution to the three-dimensional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expansion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the normalized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.
Resumo:
The evaluation of mechanical properties of carbon nanotube (CNT) fibers is inherently difficult. Here, Raman scattering-a generic methodology independent of mechanical measurements-is used to determine the interbundle strength and microscopic failure process for various CNT macroarchitectures. Raman data are used to predict the moduli of CNT films and fibers, and to illustrate the influences of the twisting geometries on the fibers' mechanical performances.
Resumo:
Thermal fluctuation approach is widely used to monitor association kinetics of surface-bound receptor-ligand interactions. Various protocols such as sliding standard deviation (SD) analysis (SSA) and Page's test analysis (PTA) have been used to estimate two-dimensional (2D) kinetic rates from the time course of displacement of molecular carrier. In the current work, we compared the estimations from both SSA and modified PTA using measured data from an optical trap assay and simulated data from a random number generator. Our results indicated that both SSA and PTA were reliable in estimating 2D kinetic rates. Parametric analysis also demonstrated that such the estimations were sensitive to parameters such as sampling rate, sliding window size, and threshold. These results furthered the understandings in quantifying the biophysics of receptor-ligand interactions.
Resumo:
Although Microcystis-based toxins have been intensively studied, previous studies using laboratory cultures of Microcystis strains are difficult to explain the phenomenon that microcystin concentrations and toxin variants in natural blooms differ widely and frequently within a short-term period. The present study was designed to unravel the mechanisms for the frequent variations of intracellular toxins related to the differences in cyanobacterial colonies during bloom seasons in Lake Taihu, China. Monitoring of Microcystis colonies during warm seasons indicated that the variations in microcystins in both concentrations and toxin species were associated with the frequent alteration of Microcystis colonies in Lake Taihu. High concentration of microcystins in the blooms was always associated with two Microcystis colonies, Microcystis flos-aquae and Microcystis aeruginosa, whereas when Microcystis wesenbergii was the dominant colonial type, the toxin production of the blooms was low. Additionally, environmental factors such as temperature and nutrition were also shown to have an effect on the toxin production of the blooms, and may also potentially influence the Microcystis species present. The results of the present study provides insight into a new consideration for quick water quality monitoring, assessment and risk alert in cyanobacterium- and toxin-contaminated freshwaters, which will be beneficial not only for water agencies but also for public health. (C) 2009 Elsevier Ltd. All rights reserved.