9 resultados para seasonal change
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Figs (Moraceae) and their pollinating wasps (Agaonidae) constitute a famous reciprocal mutualism in which figs provide some female flowers for the development of fig wasp offspring while the fig wasps pollinate Fig flowers. However, figs also host many no
Resumo:
The spatial pattern of the small fish community was studied seasonally in 1996 in the Biandantang Lake. Based on plant cover, the lake was divided into five habitats, arranged in the order by plant structure complexity from complex to simple: Vallisneria spiralis habitat (V habitat), Vallisneria spiralis-Myriophyllum spicatum habitat (V-M habitat), Myriophyllum spicatum habitat (M habitat), Nelunbo nucefera habitat (N habitat), and no vegetation habitat (NV habitat). A modified popnet was used for quantitative sampling of small fishes. A total of 16 fish species were collected; Hypseleotris swinhonis, Ctenogobius giurinus, Pseudorasbora parva, Carassius auratus and Paracheilognathus imberis were the five numerically dominant species. In both summer and autumn, the total density of small fishes was about 10 ind m(-2). Generally, Ctenogobius giurinus, a sedatory, benthic fish, was distributed more or less evenly among the five habitats, while the other four species had lower densities in the N habitat and NV habitat, which had the simplest structures. The distribution of the small fish species showed seasonal variations. In winter, most species concentrated in the V habitat, which had the most complex structure. In spring, the fish had low densities in the N and NV habitat, and were more or less evenly distributed in the other habitats. In summer, the fish had a low density in the NV habitat, and were evenly distributed in the other habitats. In autumn, the fish had higher densities in the V-M and M habitats than in the others. Generally, spatial overlaps between the dominant species were higher in winter than in the other seasons. It was suggested that the variations in the importance of predation risk and resource competition in habitat choice determined the seasonal changes of spatial patterns in the small fishes in the Biandantang Lake.
Resumo:
Spatial and temporal distribution of vegetation net primary production (NPP) in China was studied using three light-use efficiency models (CASA, GLOPEM and GEOLUE) and two mechanistic ecological process models (CEVSA, GEOPRO). Based on spatial and temporal analysis (e.g. monthly, seasonally and annually) of simulated results from ecological process mechanism models of CASA, GLOPEM and CEVSA, the following conclusions could be made: (1) during the last 20 years, NPP change in China followed closely the seasonal change of climate affected by monsoon with an overall trend of increasing; (2) simulated average seasonal NPP was: 0.571 +/- 0.2 GtC in spring, 1.573 +/- 0.4 GtC in summer, 0.6 +/- 0.2 GtC in autumn, and 0.12 +/- 0.1 GtC in winter. Average annual NPP in China was 2.864 +/- 1 GtC. All the five models were able to simulate seasonal and spatial features of biomass for different ecological types in China. This paper provides a baseline for China's total biomass production. It also offers a means of estimating the NPP change due to afforestation, reforestation, conservation and other human activities and could aid people in using for-mentioned carbon sinks to fulfill China's commitment of reducing greenhouse gases.
Resumo:
We measured ecosystem CO2 fluxes for an alpine shrubland on the north-eastern Tibetan Plateau, Qinghai, China. The study is to understand (1) the seasonal variation of CO2 flux and (2) how environmental factors affect the seasonality of CO2 exchange in the alpine ecosystem. Daytime ecosystem respiration was extrapolated from the relationship between temperature and nighttime CO2 fluxes under high turbulent conditions.Seasonal patterns of gross ecosystem production, ecosystem respiration and net ecosystem CO2 exchange followed highly the seasonal change of aboveground biomass in the alpine shrubland. The net ecosystem CO2 exchange was mainly controlled by the variation of photosynthetic photon flux density, while the ecosystem respiration was closely correlated to the soil temperature at 5-cm depth. Integrated values of gross ecosystem production, ecosystem respiration and net ecosystem CO2 exchange for the period from November 1, 2002 to October 31 2003 were estimated to be 1418, 1155 and 222 g CO2 m(-2) yr(-1), respectively.
Resumo:
The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Based oil the measurements of particulate phosphorus (PP) in the Jiaozhou Bay front May 2003 to April 2004, the spatial distribution, seasonal variation and biogeochemical characteristics of PP Were investigated to Understand the fates and roles of phosphorus in the Jiaozhou Bay ecosystem. The Concentration of the total PP ranged from 0. 07 to 2. 09 mu mol/dm(3). The concentration of POP was from 0. 01 to 1. 83 mu mol/dm(3), with all average of with all average of 0. 33 mu mol/dm(3), which accounted for 50. 4% in total PP. In general, file concentrations of IT in surface water show obvious seasonal variations in the Jiaozhou Bay. POP was the highest in spring, which derived front the accumulation of phyto-detritus and was the lowest ill autumn, which was decomposed into seawaters to participate the recycle of phosphorus. PIP was the highest in spring and summer and Was the lowest in autumn and winter. PLP Was Mainly influenced by river input in the inner bay lint POP derived front autochthonous source in the outer bay. Overkill, the concentrations of IT in the inner bay were higher than those in mouth and the Older bay. In the inner bay. the concentrations of IT with the area near the shore were higher than those in the center of the bay. Totally PP showed the decreasing trend with depth especially in spring and winter. The high value of PP emerged in 20 and 10 in Corresponding to summer and autumn, respectively. The changes of POP showed hysteretic effect compared with the changes of Chl a in the investigated year. However, according to the Change of Chl a, the second high value of POP which should be emerged ill October was missing due to the remineralization of POP and participation in the recycle of phosphorus, which lead to the high concentration of orthophosphate in seawaters.
Resumo:
Thus far, grassland ecosystem research has mainly been focused on low-lying grassland areas, whereas research on high-altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai-Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37 degrees 36'N, 101 degrees 18'E; 325 above sea level [a. s. l.]) on the Qinghai-Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (R-eco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were -58.5 and -75.5 g C m(-2), respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4-5 g C m(-2) day(-1)) each of the 2 years. Also, the integrated night-time NEE reached comparable peak values (1.5-2 g C m(-2) day(-1)) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, R-eco was an exponential function of soil temperature, but with season-dependent values of Q(10). The temperature-dependent respiration model failed immediately after rain events, when large pulses of R-eco were observed. Thus, for this alpine shrubland in Qinghai-Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem R-eco and NEE.