152 resultados para route density

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a simple, efficient, economical, and general approach to construct diverse multifunctional Fe3O4/metal hybrid nanostructures displaying magnetization using 3-aminopropyltrimethoxysilane (APTMS) as a linker. High-density Au nanoparticles (NPs) could be supported on the surface of superparamagnetic Fe3O4 spheres and used as seeds to construct Au shell-coated magnetic spheres displaying near-infrared (NIR) absorption., which may make them promising in biosensor and biomedicine applications. High-density flower-like Au/Pt hybrid NPs could be supported on the surface of Fe3O4 spheres to construct multifunctional hybrid spheres with high catalytic activity towards the electron-transfer reaction between potassium ferricyanide and sodium thiosulfate. High-density Ag or Au/Ag core/shell NPs could also be supported on the surface of Fe3O4 spheres and exhibited pronounced surface-enhanced Raman scattering (SERS), which may possibly be used as an optical probe with magnetic function for application in high-sensitivity bioassays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of density matching between the solid and liquid phases is often adopted to effectively eliminate the effect of sedimentation of suspensions in studies on dynamic behaviour of a colloidal system. However, the associated changes in the solvent composition may bring side effects to the properties investigated and therefore might lead to a faulty conclusion if the relevant correction is not made. To illustrate the importance of this side effect, we present an example of the sedimentation influence on the coagulation rate of suspensions of 2 μm (diameter) polystyrene. The liquid mixtures, in the proper proportions of water (H2O), deuterium oxide (D2O) and methanol (MeOH) as the liquid phase, density-matched and unmatched experiments are performed. Besides the influence of viscosity, the presence of methanol in solvent media, used to enhance the sedimentation effect, causes significant changes (reduction) in rapid coagulation rates compared to that in pure water. Without the relevant corrections for those non-gravitational factors it seems that gravitational sedimentation would retard the coagulation. The magnitude of the contribution from the non-gravitational factor is quantitatively determined, making the relevant correction possible. After necessary corrections for all factors, our experiments show that the influence of the sedimentation on coagulation rates at the initial stage of the coagulation is not observable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present density measurements from the application of interferometry and Fourier transform fringe analysis to the problem of nonstationary shock wave reflection over a semicircular cylinder and compare our experimental measurements to theoretical results from a CFD simulation of the same problem. The experimental results demonstrate our ability to resolve detailed structure in this complex shock wave reflection problem, allowing visualization of multiple shocks in the vicinity of the triple point, plus visualization of the shear layer and an associated vortical structure. Comparison between CFD and experiment show significant discrepancies with experiment producing a double Mach Reflection when CFD predicts a transitional Mach reflection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The evolution of dispersed short-fatigue-cracks is analysed based on the equilibrium of crack-number-density (CND). By separating the mean value and the stochastic fluctuation of local CND, the equilibrium equation of overall CND is derived. Comparing with the mean-field equilibrium equation, the equilibrium equation of overall CND has different forms in the expression of crack-nucleation-rate or crack-growth-rate. The simulation results are compared with experimental measurements showing the stochastic analyses provide consistent tendency with experiments. The discrepancy in simulation results between overall CND and mean-field CND is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Collective damage of short fatigue cracks was analyzed in the light of equilibrium of crack numerical density. With the estimation of crack growth rate and crack nucleation rate, the solution of the equilibrium equation was studied to reveal the distinct feature of saturation distribution for crack numerical density. The critical time that characterized the transition of short and long-crack regimes was estimated, in which the influences of grain size and grain-boundary obstacle effect were investigated. Furthermore, the total number of cracks and the first order of damage moment were discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been known that various ignition criteria of energetic materials have been limited in applicability to small regions. In order to explore the physical nature of ignition, we calculated how much thermal energy per unit mass of energetic materials was absorbed under different external stimuli. Hence, data of several typical sensitivity tests were analyzed by order of magnitude estimation. Then a new concept on critical thermal energy density was formulated. Meanwhile, the chemical nature of ignition was probed into by chemical kinetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A probe utilizing the bipolar pulse method to measure the density of a conducting fluid has been developed. The probe is specially designed such that the concentration of a stream tube can be sampled continuously. The density was determined indirectly from the measurement of solution conductivity. The probe was calibrated using standard NaCl solutions of varying molarity and was able to rapidly determine the density of a fluid with continuously varying conductance. Measurements of the conductivity profiles, corresponding density profiles, and their fluctuation levels are demonstrated in a channel flow with an electrolyte injected from a slot in one wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under optimized operating parameters, a hard and wear resistant ( Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of ( Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000 nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the ( Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the ( Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a previously unknown body-centered-tetragonal structure for ZnO. This structure results from a phase transformation from wurtzite in [0001]-oriented nanorods during uniaxial tensile loading and is the most stable phase for ZnO when stress is above 7 GPa. The stress-induced phase transformation has important implications for the electronic, piezoelectric, mechanical, and thermal responses of ZnO. The discovery of this polymorph brings about a more complete understanding of the extent and nature of polymorphism in ZnO. A crystalline structure-load triaxiality map is developed to summarize the relationship between structure and loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanostructured ZnO materials are of great significance for their potential applications in photoelectronic devices, light-emitting displays, catalysis and gas sensors. In this paper, we report a new method to produce large area periodical bowl-like micropatterns of single crystal ZnO through aqueous-phase epitaxial growth on a ZnO single crystal substrate. A self-assembled monolayer of polystyrene microspheres was used as a template to confine the epitaxial growth of single crystal ZnO from the substrate, while the growth morphology was well controlled by citrate anions. Moreover, it was found that the self-assembled monolayer of colloidal spheres plays an important role in reduction of the defect density in the epitaxial ZnO layer. Though the mechanism is still open for further investigation, the present result indicates a new route to suppress the dislocations in the fabrication of single crystal ZnO film. A predicable application of this new method is for the fabrication of two-dimensional photonic crystal structures on light emitting diode surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three types of streamline topology in a Karman vortex street flow are shown under the variation of spatial parameters. For the motion of dilute particles in the Karman vortex street flow, there exist a route of bifurcation to a chaotic orbit and more attractors in a bifurcation diagram for the proportion of particle density to fluid density. Along with the increase of spatial parameters in the flow field, the bifurcation process is suspended, as well as more and more attractors emerge. In the motion of dilute particles, a drag term and gravity term dominate and result in the bifurcation phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LiFePO4 attracts a lot of attention as cathode materials for the next generation of lithium ion batteries. However, LiFePO4 has a poor rate capability attributed to low electronic conductivity and low density. There is seldom data reported on lithium ion batteries with LiFePO4 as cathode and graphite as anode. According to our experimental results, the capacity fading on cycling is surprisingly negligible at 1664 cycles for the cell type 042040. It delivers a capacity of 1170 mAh for 18650 cell type at 4.5C discharge rate. It is confirmed that lithium ion batteries with LiFePO4 as cathode are suitable for electric vehicle application. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fatigue testing was performed using a kind of triangular shaped specimen to obtain the characteristics of numerical density evolution for short cracks at the primary stage of fatigue damage. The material concerned is a structural alloy steel. The experimental results show that the numerical density of short cracks reaches the maximum value when crack length is slightly less than the average grain diameter, indicating grain boundary is the main barrier for short crack extension. Based on the experimental observations and related theory, the expressions for growth velocity and nucleation rate of short cracks have been proposed. With the solution to phase space conservation equation, the theoretical results of numerical density evolution for short cracks were obtained, which were in agreement with our experimental measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to develop the ultra-large scale integration(ULSI), low pressure and high density plasma apparatus are required for etching and deposit of thin films. To understand critical parameters such as the pressure, temperature, electrostatic potential and energy distribution of ions impacting on the wafer, it is necessary to understand how these parameters are influenced by the power input and neutral gas pressure. In the present work, a 2-D hybrid electron fluid-particle ion model has been developed to simulate one of the high density plasma sources-an Electron Cyclotron Resonance (ECR) plasma system with various pressures and power inputs in a non-uniform magnetic field. By means of numerical simulation, the energy distributions of argon ion impacting on the wafer are obtained and the plasma density, electron temperature and plasma electrostatic potential are plotted in 3-D. It is concluded that the plasma density depends mainly on both the power input and neutral gas pressure. However, the plasma potential and electron temperature can hardly be affected by the power input, they seem to be primarily dependent on the neutral gas pressure. The comparison shows that the simulation results are qualitatively in good agreement with the experiment measurements.