7 resultados para risk analysis

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

互连网上电子商务的蓬勃发展为企业提供了巨大商机,但风险也是巨大的。同时,网上信息爆炸也需要一种使用的方法对信息进行分析、整理、提取,为下一步的决策提供坚实的基础。本文在总结不同风险分析方法的基础上,提出了一种完整的方法,为网上商务的风险分析和决策提供了一种实用的解决方案。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rockfall is a geological evolution process involving detachment of blocks or boulders from a slope face, then their free falls, bouncing, rolling or sliding, and finally deposition near the toe of the slope. Many facts indicate that the rockfall can cause hazards to peoples, and it can be regarded as a geological hazard. A rockfall event may only involve a boulder or rock, and also several ones. When there are peoples, buildings, or other man-made establishments within the scope of rockfall trajectory, losses will be possibly induced in tenns of human lives or damages to these facilities. Researches into mechanism, kinematics, dynamics, hazard assessment, risk analysis, and mitigation measures of rockfalls are extremely necessary and important. Occurrence of rockfall is controlled by a lot of conditions, mainly including topographical, geomorphic, geological ones and triggering factors. The rockfall especially in mountainous areas, has different origins, and occurs to be frequent, unexpected, uncertain, in groups, periodic and sectional. The characterization and classification of the rockfalls not only increase knowledge about rockfall mechanism, but also can instruct mitigation of the hazards. In addition, stability of potential rockfalls have various sensitivity to different triggering factors and changes of geometrical conditions. Through theoretical analyses, laboratory experiments and field tests, the author presents some back-analysis methods for friction coefficients of sliding and rolling, and restitution coefficients. The used input data can be obtained economically and accurately in the field. Through deep studies on hazard assessment methods and analysis of factors influencing rockfall hazard, this paper presents a new assessment methodology consisting of preliminary assessment and detailed one. From the application in a 430 km long stretch of the Highway, which is located between Paksho and Nyingtri in Tibet, the methodology can be applicable for the rockfall hazard assessment in complex and difficult terrains. In addition, risk analyses along the stretch are conducted by computing the probability of encountering rockfalls and life losses resulting from rockfall impacts. Rockfall hazards may be mitigated by avoiding hazardous areas, clearness of dangerous rocks, reinforcement, obstructing the rockfalls, leading the rockfalls, warning and monitoring for rockfalls, etc. Seen from present remedial level of rockfall hazards, different mitigation measures, economical and effective buffering units, monitoring tecliniques and consciousness of environmental protection for rockfall mitigations should be further developed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various numbers of ancient landslides of various scales are frequently distributed on both banks of reservoirs, especially large reservoirs, both in China and abroad. During inundation and operation of theses reservoirs, some of the landslides are reactivated, which caused losses of people's lives and properties to various extents, some even disasters. Systematic studies are, however, very few on the reservoir-induced reactivation mechanism and development tendency prediction. Based on investigation of reservoir-induced reactivation phenomena of ancient landslides and relevant existing research problems, a systematic study is carried out on the field identification, induced reactivation mechanism, development tendency prediction, risk decision-making and treatment of reservoir-related ancient landslides, through analysis of large numbers of engineering geological investigation results, scientific experimental and research results, in combination with prevention and treatment practices of reservoir-related landslides both in China and abroad, and a series of research results have been obtained. 1. On the basis of study of the distribution features, genesis mechanism of ancient landslides on river banks, a set of scientific methods are summarized on field identification of ancient landslides, and a significant method named "lithologic sequence method" or "indicator layer method", is proposed, which is proved to be very useful. 2. A detail study is made on the reservoir-induced hydraulic effects and material mechanic effects (or softening effects) on the ancient landslide through model and case studies, which concludes that the magnitude and properties of reservoir-induced hydraulic effects are related to the shapes of sliding planes, water content and permeability of landslide materials and variation rate and magnitude of reservoir levels; the magnitude of material mechanic effects are related to the material composition (including mineral composition and grain size), natural water content and saturation state of sliding zones. Also a sensitive analysis is made on the factors that are related to the stabilities of the landslides, which indicate that the stability of a landslide is more sensitive to the groundwater head h_w in the slides and the inner friction angleψof sliding zones than others. 3. The joint inducing mechanism of rainfall and reservoir is also discussed in the paper through model analysis and case study, which proves that reservoir inundation increases firstly the sensitivity of a landslides to rainfall through reduction of its stability or cracking deformation which will increase the rainfall infiltration to the slide body, and then rainfall triggers reactivation or intensifies the reservoir-induced deformation of a landslide. 4. Based on rheologic test results of sliding zones of several reservoir-related ancient landslides, the rheologic characteristics of sliding zones have been discussed in detail and several typical rheologic models have been set up, which well explains the dynamic process of slide deformation. The response types to reservoir inundation and development tendency of reservoir -related ancient landslide are discussed in the paper based on field investigation results. And prediction methods for reservoir-related landslides have been studied based on the Mate-Synthetic principle of quantitative and qualitative analysis, as well as combination of computation and internal mechanism analysis, and a rheologic analytical method is proposed which is proved very useful for prediction of the landslide development tendency. 6. In disaster-prevention and treatment of reservoir-related landslides, risk decision-making has been proved very significant both in engineering and economics. Based on the practices in disaster-prevention and treatment of reservoir-related landslides both in China and abroad, the disaster-prevention risk decision-making for reservoir-related landslides has been proposed in terms of philosophy, methods and procedures, and well put into practice. A summary is also made through case study of the experiences of treatment of reservoir-related landslides both in China and abroad in terms of principle, methods and technical lines. 7 A detail study is made as a case study of the reactivated Maoping ancient landslide on the left bank of the Geheyan Reservoir on Qingjiang river in Hubei province, China, including its field identification features, reservoir-induced reactivation characteristics and mechanism, development tendency prediction and proposed counter measures based on risk analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Through years of practice, reservoir management has already become the basic mode of foreign oil companies to realize the high-efficient development of the oil field. From the view of reservoir development and technological economy, reservoir management regards the study of the reservoir engineering, designs of reservoir projects and the dynamic analysis of the reservoir's performance as a system. In the fields of reservoir description, the establishment of the geological models and development models, the dynamic simulations of reservoir exploitation and the design of the oil engineering, reservoir management emphasizes the cooperation of the geology and the engineering, the combination of the engineering technology and the economic evaluation. In order to provide the means and basis for the reservoir geology study, reservoir evaluation, reserves calculation, numerical simulation, development plan and risk analysis, it adopts the reservoir management activities(team work) to make and implement the optimized oil field development management strategies so that secientific and democratic decision making can be achieved. Under the planned economic system for a long time, the purpose of Chinese reservoir development has been to fulfill the" mandatory" production task. With the deepening of the reform, the management organization of Chinese petroleum enterprises has been gradually going through the transition and reforms to the operational entity and the establishment of the mode of oil companies under the socialist market economy system. This research aims at introducing the advanced reservoir management technique from foreign countries to further improve the reservoir development results and wholly raise the economic benefits of Chinese mature land facieses sandstone reservoirs in the later stage of the water flooding. We are going to set up a set of modern reservoir management modes according to the reservoir features, current situation and existing problems of GangXi oil field of DaGang oil company. Through the study and implementation of the reservoir description and numerical simulation technology effectively, we plan to work out integrated adjustment projects, to study the related technology of oil recovery; to set up the effective confirmable data procedure and data management system of the reservoir management, to establish the coordinated model and workbench related to geology, engineering and economy in order to realize the real time supervision and evaluation on the process of reservoir development. We hope to stipulate modernization management tools for GangXi oil fields to rationally utilize various kinds of existing technological methods and to realize the economic exploitation and achieve the maximum benefits from the reservoir. The project of the modem reservoir management will be carried out on the GangXi oil field of DaGang oil company for this oil field is typical and has integrated foundamental materials and perfect networks. Besides, it is located in the good geographical position enjoying very convenient traffic. Implementing modern reservoir management will raise the recovery ratio, reduce the production cost and improve the working efficiency. Moreover, the popularization of modern reservoir management will improve the comprehensive benefits of DaGang oil company and even the whole Petro China. Through the reserch of this project, the following technical indicators can be reached: Establishing the concept of modern reservoir management. Establishing a set of integrated data information management system adapt to the features of GangXi reservoir. 3. Forming technical research modes of modern reservoir management suitable for mature reservoirs in the later developing stage. 4. Advancing projects of GangXi reservoir which are maxium optimized in engineering technique and economic benefits of oil exploitation. Besides, this set of technology, research principle and method can guide the mature reservoir of DaGang oil field and even the whole PetroChina to develop the further research of reservoir adjustment and improve the reservoir recovery factor and developing level constantly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As one part of national road No. 318, Sichuan-Tibet (Chengdu-Lasha) Highway is one of traffic life lines connecting Tibet municipality to the inland, which is very important to the economic development of Tibet. In addition, it is still an important national defence routeway, with extremely important strategic position on maintaining the stability and solidarity of Tibet municipality and consolidating national defence. Particular geological condition, terrain and landform condition and hydrometeorological condition induce large-scale debris flows and landslides (including landslips) and the like geological hazards frequently occur along the highway. High frequency geological hazards not only result in high casualties and a great property loss, but also block traffic at every turn, obstructing the Sichuan-Tibet highway seriously. On the basis of considerable engineering geological investigation and analysis to the relative studying achievements of predecessors, it is found that one of the dominating reason incurring landslides or debris flows again and again in a place is that abundant loose materials are accumulated in valleys and slopes along the highway. Taking landslides' and debris flows along Ranwu-Lulang section of Sichuan-Tibet highway as studying objects, the sources and cause of formation of loose accumulation materials in the studying area are analyzed in detail, the major hazard-inducing conditions, hazard, dynamic risk, prediction of susceptibility degree of landslides and debris flows, and the relations between landslides and debris flows and various hazard-inducing conditions are systematically researched in this paper. All of these will provide scientific foundation for the future highway renovating and reducing and preventing geological hazards. For the purpose of quantitatively analyzing landslide and debris flow hazards, the conception of entropy and information entropy are extended, the conception of geological hazard entropy is brought forward, and relevant mathematics model is built. Additionally, a new approach for the dynamic risk analysis of landslide and debris flow is put forward based on the dynamic characteristics of the hazard of hazard-inducings and the vulnerability of hazard-bearings. The formation of landslide and debris flow is a non-linear process, which is synthetically affected by various factors, and whose formation mechanics is extremely complex. Aiming at this question, a muli-factors classifying and overlapping technique is brought forward on the basis of engineering geomechanics meta-synthesis (EGMS) thought and approach, and relevant mathematics model is also built to predict the susceptibility degree of landslide or debris flow. The example analysis result proves the validity of this thought and approach. To studying the problem that whether the formation and space distribution of landslides and debris flows are controlled by one or several hazard-inducing conditions, the theme graphics of landslides and debris flows hazard and various hazard-inducing conditions are overlapped to determine the relationship between hazard and hazard-inducing conditions. On this basis, the semi-quantitative engineering zonation of the studying area is carried out. In addition, the overlapping analysis method of the hazard-indue ing conditions of landslides and debris flows based on "digital graphics system" is advanced to orderly organize and effectively manage the spatial and attributive data of hazard and hazard-inducing conditions theme graphics, and to realize the effectively combination of graphics, images and figures.