83 resultados para response to selection
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Introduced species often start with limited genetic variability, which is problematic for selective breeding. The problem of inbreeding can be exasperated by hermaphroditism. The bay scallop Argopecten irradians irradians is a hermaphroditic species that has been introduced to and now supports a major aquaculture industry in China. Positive response to selection for fast growth was observed in one of the less inbred stocks in a previous study. In this study, we evaluated selection for the second generation to determine if response to selection can be sustained in this introduced population of a hermaphroditic species. Response to selection, realized heritability for the second generation, cumulative (over two generations), current (for the second generation) and residual (from the first generation) genetic gains were estimated by comparing three different types of lines: SS (selected for two generation), SC (selected for the first generation only) and CC (unselected for two generations). The SS line grew significantly faster (P < 0.05) than the other two lines, indicating that the second generation selection for faster growth is still effective. Response to selection and realized heritability for the second generation were 0.612 +/- 0.101 and 0.349 +/- 0.057, respectively, which are similar to those observed for the first generation. The cumulative, current, and residual gains were 17.56 +/- 5.30%, 10.63 +/- 2.46%, and 6.25 +/- 3.13%, respectively. The sustained response to selection for the second generation observed here suggests that considerable genetic variability exists in this population and that future efforts on selective breeding are likely to be fruitful. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two different stocks (A and B) of the bay scallop Argopecten irradialls irradians (Lamarck, 1819) were used to test mass selection on growth. Stock A was a descending stock from the initial introduction from U.S.A. in 1982, which had been cultured in China for about 20 years. Stock B was the third generation from a recent introduction from U.S.A. in 1999. Truncation selection was conducted by selecting the largest 11% scallops in shell length from Stock A and the largest 12.7% scallops from Stock B as parents for the respective selected groups. Before the removal of parents for truncation selection, equal numbers of scallops were randomly chosen from Stock A and B to serve as parents for the control groups. Offspring from the four groups were reared under the same hatchery, nursery, and grow-out conditions. Values of response to selection and realized heritability at larvae, spat and grow-out stages for Stock B were all significantly (P < 0.001) higher than its counterpart for Stock A. For Stock A, no significant response to selection was observed (P > 0.05) at any stage, and the realized heritability for shell length was 0.015 +/- 0.024 for larvae, 0.040 +/- 0.027 for spat, and 0.080 +/- 0.009 for grow-out, respectively. For Stock B, however, significant (P < 0.05) response to selection was observed, and the realized heritability for shell length was 0.511 +/- 0.010 for larvae, 0.341 +/- 0.022 for spat, and 0.338 +/- 0.015 for grow-out. On average, responses to selection at the three stages for Stock B was 30 x, 7.1 x, and 3 x higher than its counterpart for Stock A, respectively. Accordingly, realized heritability at above stages for Stock B was 33 X, 7.5 x, and 3.2 X higher than its counterpart for Stock A, respectively. Differences in response to selection and realized heritability between the two stocks are presumably due to differences in genetic variability. As the 20th generation from the initial introduction consisted of only 26 scallops, Stock A is known to be highly inbred, while inbreeding in Stock B is negligible. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Strong mechanical forces can, obviously, disrupt cell-cell and cell-matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin-integrin interaction and integrin-ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin-ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin-ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force. PMID: 20542514
Resumo:
Specklegram in multimode fiber has successfully been used as a sensor for detecting mechanical disturbance. Speckles in a multimode pure silica grapefruit fiber are observed and compared to that of a step-index multimode fiber, showing different features between them. The sensitivities to external disturbance of two kinds of fiber were measured, based on single-multiple-single mode (SMS) fiber structure. Experimental results show that the grapefruit fiber shows higher sensitivity than does the step-index multimode fiber. The transmission spectrum of the grapefruit fiber was measured as well, showing some oscillation features that are significantly different from that of a step-index multimode fiber. The experiments may provide suggestions to understand the mechanisms of light propagation in grapefruit fibers. (D 2008 Optical Society of America.