169 resultados para resonant electron-phonon couping
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Yb3Al5O12 single crystal has been grown by Czochralski (CZ) method. The absorption spectrum was investigated at low temperature and the electronic energy levels for F-2(5/2) multiplet of Yb3+ in YbAG was proposed. The up-conversion emission of the crystal under 940 nm diode pumping and the X-ray excited luminescence (XEL) features of the crystal were also studied. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Quantum dissipation and broadening mechanisms in Si-doped InGaN quantum dots are studied via the photoluminescence technique. It is found that the dissipative thermal bath that embeds the quantum dots plays an important role in the photon emission processes. Observed spontaneous emission spectra are modeled with the multimode Brownian oscillator model achieving an excellent agreement between experiment and theory for a wide temperature range. The dimensionless Huang-Rhys factor characterizing the strength of electron-LO-phonon coupling and damping constant accounting for the LO-phonon-bath interaction strength are found to be similar to 0.2 and 200 cm(-1), respectively, for the InGaN QDs. (c) 2006 American Institute of Physics.
Resumo:
A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).
Resumo:
Cyclotron resonance in CdTe/CdMgTe quantum wells (QWs) was studied. Due to the polaron effect the zero-field effective mass is strongly influenced by the QW width. The experimental data have been described theoretically by taking into account electron-phonon coupling and the nonparabolicity of the conduction band. The subband structure was calculated self-consistently. The best fit was obtained for an electron-phonon coupling constant alpha = 0.3 and bare electron mass of m(b) = 0.092m(0).
Resumo:
Electron cyclotron resonance CR) measurements have been carried out in magnetic fields up to 32 T to study electron-phonon interaction in two heavily modulation-delta -doped GaAs/Al0.3Ga0.7As single-quantum-well samples. No measurable resonant magnetopolaron effects were observed in either sample in the region of the GaAs longitudinal optical (LO) phonons. However, when the CR frequency is above LO phonon frequency, omega (LO)=E-LO/(h) over bar, at high magnetic fields (B>27 T), electron CR exhibits a strong avoided-level-crossing splitting for both samples at frequencies close to (omega (LO)+ (E-2-E-1)1 (h) over bar, where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large with the minimum separation of 40 cm(-1) occurring at around 30.5 T. A detailed theoretical analysis, which includes a self-consistent calculation of the band structure and the effects of electron-phonon interaction on the CR, shows that this type of splitting is due to a three-level resonance between the second Landau level of the first electron subband and the lowest Landau level of the second subband plus one GaAs LO phonon. The absence of occupation effects in the final states and weak screening or this three-level process yields large energy separation even in the presence of high electron densities. Excellent agreement between the theory and the experimental results is obtained.
Resumo:
Electron cyclotron resonance (CR) has been studied in magnetic fields up to 32 T in two heavily modulation-delta-doped GaAs/Al0.3Ga0.7As single quantum well samples. Little effect on electron CR is observed in either sample in the region of resonance with the GaAs LO phonons. However, above the LO-phonon frequency energy E-LO at B > 27 T, electron CR exhibits a strong avoided-level-crossing splitting for both samples at energies close to E-LO + (E-2 - E-1), where E-2, and E-1 are the energies of the bottoms of the second and the first subbands, respectively. The energy separation between the two branches is large, reaching a minimum of about 40 cm(-1) around 30.5 T for both samples. This splitting is due to a three-level resonance between the second LI, of the first electron subband and the lowest LL of the second subband plus an LO phonon. The large splitting in the presence: of high electron densities is due to the absence of occupation (Pauli-principle) effects in the final states and weak screening for this three-level process. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
The LO phonon modes in the barrier layers of a GaInAs/AlInAs multiple quantum well structure are investigated by resonance Raman scattering (RRS), the excitation laser photon energy tuned to resonate with the above barrier interband transition energy. The resonance enhancement of LO phonon peaks are shown to be caused by Frohlich electron-phonon interaction. The pressure-dependent profiles for both AlAs-like (LO(2) mode) and InAs-like (LO(1) mode) Raman peak intensities are well fitted by the Gaussian lineshape. The shift between these two profiles can be explained by the outgoing RRS mechanism, providing information on the pressure-induced shift of the excitonic transition energy. The amplitude ratios of the two profiles are close to 1, showing a well defined two-mode behavior and the nearly equal polarizability for Al-As and In-As bonds in AlInAs alloy.
Resumo:
The authors demonstrate that the Rashba spin-orbit interaction in low-dimensional semiconductors can enhance or reduce the electron-phonon scattering rate by as much as 25%. The underlying mechanism is that the electron-phonon scattering phase space for the upper (lower) Rashba band is significantly enhanced (suppressed) by the spin-orbit interaction. While the scattering time decreases for the upper level, the mobility of the level increases due to an additional term in the electron velocity. (C) 2007 American Institute of Physics.
Resumo:
Far infrared magnetophotoconductivity performed on high purity GaAs reveals the existence of fine structures in the resonant magnetopolaron regions. The fine structures are attributed to the presence of bound phonons due to multiphonon processes. We demonstrate that the magnetopolaron energy spectrum consists of bound phonon branches and magnetopolaron branches. Our results also indicate that different phonons are bound to a single impurity, and that the bound phonon in Si-doped GaAs is a quasilocalized mode.
Resumo:
利用具有纳焦能量、高重复频率的偏振光飞秒双脉冲对金属铬膜样品进行微加工,样品表面都会产生微突起状结构,它们的宽度在0~400 ps的双脉冲时延范围内没有明显的变化,但高度却都在1~10 ps的双脉冲时延范围内呈现明显的下降,在此时延范围之外并没有明显的变化。通过加工样品的扫描电子显微镜(SEM)图片发现,对于偏振光,利用双脉冲方法,可以获得更好的加工质量。并且线偏振光得到的微突起状结构比较细长,在入射光束的偏振方向上有所伸长;圆偏振光得到的微突起状结构比较接近圆形。即在低脉冲能量、高重复频率情况下,具体的微加工特征形貌与入射光束的偏振状态有关。
Resumo:
Ultrafast lasers ablation of Cr film was investigated by using double-pulse method. Experimental results show that there exists a temporal ablation window effect with each of the double pulses adjusted just smaller than the threshold. When the delay between the double pulses is within the order of 400 ps, the ablation of Cr film could happen. When the delay between the double pulses is beyond the order of 400 ps, the ablation of Cr film would not happen, and the reflectivity from the surface of the Cr film shows a sharp rise at the same time. The two-temperature model was developed into the form of double pulses to explain the experimental phenomena. Furthermore, microbump structures were formed on the surface of Cr film after ablation by ultrafast double pulses. Their heights exhibit an obvious drop between 1 and 10 ps double pulses delay, which is involved with the electron-phonon coupling process according to the numerical simulation. These results should be helpful for understanding the dynamic processes during ultrafast lasers ablation of metal films. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
应用中频感应提拉法生长出不同掺杂浓度的Yb:FAP激光晶体,运用电感耦合等离子体原子发射光谱仪(ICP-AES)测定了Yb^3+离子存Yb:FAP晶体中的分凝系数约为0.03。随着晶体的生长,晶体中Yb^3+离子的轴向浓度逐渐增大。研究Yb:FAP晶体在77K和300K温度下的吸收光谱发现,振动谱的变化主要是由电子-声子近共振耦合作用引起的。系统地研究了不同Yb^3+离子掺杂浓度Yb:FAP晶体的吸收光谱和荧光光谱。通过吸收光谱的测量计算了晶体的吸收截面。Yb:FAP晶体在904nm和982nm处存在Yb