2 resultados para renal mesangial cells
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Glucose is an important regulator of cell growth and metabolism. Uridine diphosphate sugars (UDP-sugars), as the intermediate products of metabolism, play pivotal roles as precursors in the synthesis of complex carbohydrates and glycolipids as well as lectose. It is very important to study their metabolism in cells in clinical biochemistry. A capillary electrophoretic method has been developed for the analysis of UDP-sugars and nucleotides, By using an uncoated capillary (70cm x 50 mu m) and 20 mmol/L borax buffer (pH 9), 4 important UDP-sugars can be analyzed in 15 min at 22 kV with satisfactory precision and sensitivity. The developed method has been applied to analyze UDP-sugars concentrations in lymphocytes, fibroblasts and mesangial cells, and the results show it not only is much better than HPLC method, but also can be used to measure the energy charge of cells.
Resumo:
Background: Endothelial cells (EC) shed endothelial microparticles (EMP) in activation and apoptosis. Objectives: We compared the antigenic expression of EMP species released during activation as compared to apoptosis, in three cell lines. Methods: EC from renal and brain microvascular (MiVEC) and coronary macrovascular (MaVEC) origin were incubated with TNF-alpha to induce activation, or deprived of growth factors to induce apoptosis. Antigens expressed on EMP and EC were assayed flow cytometrically and included constitutive markers (CD31, CD51/61, CD105), inducible markers (CD54, CD62E and CD106), and annexin V binding. Results: It was found that in apoptosis, constitutive markers in EMP were markedly increased (CD31>CD105), with a concomitant decrease in expression in EC. Annexin V EC surface binding and annexin V+ EMP were more sharply increased in apoptosis than in activation. In contrast, in activation, inducible markers in EMP were markedly increased in both EMP and EC (CD62E>CD54>CD 106). Coronary MaVEC released significantly less EMP than MiVEC. Conclusion: EC release qualitatively and quantitatively distinct EMP during activation compared to apoptosis. Analysis of EMP phenotypic signatures may provide clinically useful information on the status of the endothelium. (C) 2003 Elsevier Science Ltd. All rights reserved.