9 resultados para relationship network

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Features of homologous relationship of proteins can provide us a general picture of protein universe, assist protein design and analysis, and further our comprehension of the evolution of organisms. Here we carried Out a Study of the evolution Of protein molecules by investigating homologous relationships among residue segments. The motive was to identify detailed topological features of homologous relationships for short residue segments in the whole protein universe. Based on the data of a large number of non-redundant Proteins, the universe of non-membrane polypeptide was analyzed by considering both residue mutations and structural conservation. By connecting homologous segments with edges, we obtained a homologous relationship network of the whole universe of short residue segments, which we named the graph of polypeptide relationships (GPR). Since the network is extremely complicated for topological transitions, to obtain an in-depth understanding, only subgraphs composed of vital nodes of the GPR were analyzed. Such analysis of vital subgraphs of the GPR revealed a donut-shaped fingerprint. Utilization of this topological feature revealed the switch sites (where the beginning of exposure Of previously hidden "hot spots" of fibril-forming happens, in consequence a further opportunity for protein aggregation is Provided; 188-202) of the conformational conversion of the normal alpha-helix-rich prion protein PrPC to the beta-sheet-rich PrPSc that is thought to be responsible for a group of fatal neurodegenerative diseases, transmissible spongiform encephalopathies. Efforts in analyzing other proteins related to various conformational diseases are also introduced. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fiber web is modeled as a three-dimensional random cylindrical fiber network. Nonlinear behavior of fluid flowing through the fiber network is numerically simulated by using the lattice Boltzmann (LB) method. A nonlinear relationship between the friction factor and the modified Reynolds number is clearly observed and analyzed by using the Fochheimer equation, which includes the quadratic term of velocity. We obtain a transition from linear to nonlinear region when the Reynolds numbers are sufficiently high, reflecting the inertial effect of the flows. The simulated permeability of such fiber network has relatively good agreement with the experimental results and finite element simulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A radial basis function neural network was employed to model the abundance of cyanobacteria. The trained network could predict the populations of two bloom forming algal taxa with high accuracy, Nostocales spp. and Anabaena spp., in the River Darling, Australia. To elucidate the population dynamics for both Nostocales spp. and Anabaena spp., sensitivity analysis was performed with the following results. Total Kjeldahl nitrogen had a very strong influence on the abundance of the two algal taxa, electrical conductivity had a very strong negative relationship with the population of the two algal species, and flow was identified as one dominant factor influencing algal blooms after a scatter plot revealed that high flow could significantly reduce the algal biomass for both Nostocales spp. and Anabaena spp. Other variables such as turbidity, color, and pH were less important in determining the abundance and succession of the algal blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research. we found CoMFA alone could not obtain sufficiently a strong equation to allow confident prediction for aminobenzenes. When some other parameter. such as heat of molecular formation of the compounds, was introduced into the CoMFA model, the results Were improved greatly. It gives us a hint that a better description for molecular structures will yield a better prediction model, and this hint challenged us to look for another method-the projection areas of molecules in 3D space for 3D-QSAR. It is surprising that much better results than that obtained by using CoMFA Were achieved. Besides the CoMFA analysis. multiregression analysis and neural network methods for building the models were used in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A quantitative structure-property study has been made on the relationship between molar absorptivities (epsilon) of asymmetrical phosphone bisazo derivatives of chromotropic acid and their color reactions with cerium by multiple regression analysis and neural network. The new topological indices A(x1) - A(x3) suggested in our laboratory and molecular connectivity indices of 43 compounds have been calculated. The results obtained from the two methods are compared. The neural network model is superior to the regression analysis technique and gave a prediction which was sufficiently accurate to estimate the molar absorptivities of color reagents during their color reactions with cerium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the molecular connectivity indices and the electronic charge parameters of forty-eight phenol compounds nave been calculated. and applied for studying the relationship between partition coefficients and structure of phenol compounds. The results demonstrate that the properties of compounds can be described better with selective parameters, and the results obtained by neural network are superior to that by multiplle regression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electronic parameters of 12 N-nitroso compounds have been computated with semiempirical quantum chemical calculation, and the study on the relationships between the structures of these compounds and the carcinogenic activities have been performed by using multivariate regression analysis and neural network with satisfactory results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, functions as a biological barrier by extruding cytotoxic agents out of cells, resulting in an obstacle in chemotherapeutic treatment of cancer. In order to aid in the development of potential P-gp inhibitors, we constructed a quantitative structure-activity relationship (QSAR) model of flavonoids as P-gp inhibitors based on Bayesian-regularized neural network (BRNN). A dataset of 57 flavonoids collected from a literature binding to the C-terminal nucleotide-binding domain of mouse P-gp was compiled. The predictive ability of the model was assessed using a test set that was independent of the training set, which showed a standard error of prediction of 0.146 +/- 0.006 (data scaled from 0 to 1). Meanwhile, two other mathematical tools, back-propagation neural network (BPNN) and partial least squares (PLS) were also attempted to build QSAR models. The BRNN provided slightly better results for the test set compared to BPNN, but the difference was not significant according to F-statistic at p = 0.05. The PLS failed to build a reliable model in the present study. Our study indicates that the BRNN-based in silico model has good potential in facilitating the prediction of P-gp flavonoid inhibitors and might be applied in further drug design.