52 resultados para reed marsh

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

全球变化背景下人类生存环境及社会经济的可持续发展要求,使得水循环和碳循环成为科学研究的关注点。湿地与森林、海洋并称为全球三大生态系统,与生态平衡、人类生存和经济社会可持续发展息息相关,特别是湿地的碳汇功能使得其在全球碳循环中具有重要作用。我国湿地面积占亚洲第一位,世界第四位,占世界湿地面积的11.9% 。但是,与森林、草地与农田等生态系统相比,湿地水碳循环控制机制研究的甚少,制约着湿地生态系统的水碳管理。 本论文基于2005~2007 年盘锦芦苇湿地生态系统野外观测站的涡度相关系统的水碳通量和气象环境因子的连续观测数据,结合芦苇湿地生态系统的生物学调查资料,较系统地分析了芦苇湿地生态系统水汽通量和碳通量的动态特征,探讨了不同时间尺度芦苇湿地生态系统水汽通量和碳通量的环境控制机制。主要结论如下: (1)芦苇湿地生态系统蒸散的日、季变化显著。2005~2007 年盘锦芦苇湿地生态系统的年蒸散量分别为432、480 和445 mm。非生长季(11 月~次年4 月)对全年蒸散量的贡献约13~16%,表明在湿地蒸散年总量的估算中不能忽略非生长季的贡献。 (2)关于动力作用和热力作用对芦苇湿地蒸散的贡献表明,能量是驱动芦苇湿地蒸散的重要因素,在小时至月尺度上均起着主导作用;时间尺度越长,能量因子对蒸散变异的解释率越大。仅温度就能解释蒸散月总量变异的95%左右。但是,随着时间尺度的降低,水分条件如饱和水汽压差、相对湿度,对芦苇湿地蒸散的作用逐渐显现。降雨和蒸散的变化虽然没有统计上的相关性,但短时段的降雨可能导致雨后蒸散增强,而持续多天的阴雨天气却能导致蒸散量连续下降。 (3)基于芦苇湿地生态系统作物系数(kc)具有显著日间变异的事实,发展了耦合气温、相对湿度和净辐射影响的芦苇湿地日作物系数模型,弥补了国际粮农组织建议的蒸发散估算模型FAO56 缺乏适宜湿地作物系数的不足。 (4)芦苇湿地生态系统呼吸呈单峰型季节变化,2005~2007 年生态系统呼吸的年总量分别为834、894 和872 g C m-2 yr-1,非生长季芦苇湿地的生态系统呼吸碳排放量为102~136 g C m-2 season-1,占全年生态系统呼吸总量的12~16%。这说明,非生长季湿地生态系统的碳排放通量不可忽视。温度是小时至月尺度的生态系统呼吸控制因子;同时,生物因素也对芦苇湿地生态系统呼吸有显著影响。生态系统呼吸对温度的响应呈指数函数关系,二者间的响应受土壤水分的影响。当表层土壤含水量(5 cm) 为20~25%时,芦苇湿地生态系统呼吸的潜力(Reco,10)最大。生态系统呼吸的日值与地上生物量、叶面积指数呈对数正相关,而与冠层高度呈显著二次曲线关系。生态系统呼吸的年际差异并不是由温度变化引起,而与植被生长状况密切相关。 (5)芦苇湿地生态系统的净碳交换季节变化明显,变化范围在-12.9~4.2 g C m-2 day-1 之间。一般在5~9 月表现为大气CO2 的汇,其余月份为碳源。其中,净碳吸收最大的月份为6、7 月,而净碳排放最大的月份为4、10 月。2005~2007 年的年碳收支分别为-55、-230 和-53 g C m-2 yr-1,呈碳汇。 (6)不同时间尺度的净碳交换控制因子不同。小时尺度上,影响芦苇湿地生态系统净碳交换的环境因子主要是光合有效辐射(PAR) 。芦苇湿地生态系统光合作用的光响应参数(α、Amax 和Reco)随温度指数上升,而与叶面积指数呈线性正相关。光响应参数的这种显著季节波动表明,在生态系统碳循环模型中不应该将生态系统的光合作用参数视为常数,应该考虑采用光响应参数与环境和生物因子间的定量关系来反映光合作用光响应参数动态。日尺度上,温度是芦苇湿地碳交换的主要控制因子,湿地净碳交换在15℃左右由正值变为负值,芦苇湿地由碳源变为碳汇。除温度外,饱和水汽压差对日尺度净碳交换波动也有影响,二者呈二次曲线关系(U 型),当饱和水汽压差在0.8 kPa 附近时,芦苇湿地净碳吸收达到最大。月尺度上,影响芦苇湿地净碳交换的主要环境因子依然是温度,二者间表现出“非对称响应”特征。 (7)对芦苇湿地碳交换各组分间的关系分析表明,芦苇湿地生态系统呼吸和净碳交换均受总光合生产力的显著影响,即通过光合作用产物来源控制。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry mass, nitrogen and phosphorus content in belowground litter of four emergent macrophytes (Typha glauca Godr., Phragmites australis (Cav.) Trin., Scolochloa festucacea (Willd.) Link and Scirpus lacustris L.) were followed for 1.2 years in a series of experimental marshes, Delta Marsh, Manitoba. Litter bags containing roots and rhizome materials of each species were buried in unflooded soil, or soil flooded at three water depths (1–30, 31–60, > 60 cm). There were few differences in dry mass loss in unflooded or flooded soils, and depth of flooding also had little effect on decomposition rates. In the flooded sites, Scolochloa and Phragmites roots lost more mass (48.9–63.8% and 59.2–85.5%, respectively) after 112 days than Typha and Scirpus (36.3–43.6 and 37.0–47.2%, respectively). These differences continued through to the end of the study, except in the shallow sites where Scirpus roots lost more mass and had comparable mass remaining as Scolochloa and Phragmites. In the unflooded sites, there was little difference between species. All litters lost nitrogen (22.9–90.0%) and phosphorus (46.3–92.7%) during the first 112 days, then levels tended to remain constant. Decay rates for our belowground root and rhizome litters were comparable to published literature values for aboveground shoot litter of the same species, except for Phragmites roots and rhizomes which decomposed at a faster rate (−k = 0.0014−0.0032) than shoots (−k = 0.0003−0.0007, [van der Valk, A.G., Rhymer, J.M., Murkin, H.R., 1991. Flooding and the decomposition of litter of four emergent plant species in a prairie wetland. Wetlands 11, 1–16]).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil samples from a Louisiana Barataria Basin brackish marshes were fractionated into acid-volatile sulfides (AVS), HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester-sulfate sulfur, and carbon-bonded sulfur. Inorganic sulfur composed 13% of total sulfur in brackish marsh soil with HCl-soluble sulfur representing 63–92% of the inorganic sulfur fraction. AVS represented less than 1% of the total sulfur pool. Pyrite sulfur and elemental sulfur together accounted for 8–33% of the inorganic sulfur pool. Organic sulfur, in the forms of ester-sulfate sulfur and carbon-bonded sulfur, was the most dominant pool representing the majority of total sulfur in brackish marsh. Results were compared to values reported for fresh and salt marshes. Reported inorganic sulfur fractions were greater in adjacent marshes, constituting 24% of total sulfur in salt marsh, and 22% in freshwater marshes. Along a salinity gradient, HCl-soluble sulfur represented 78–86% of the inorganic sulfur fraction in fresh, brackish, and salt marsh. Organic sulfur in the forms of ester-sulfate sulfur and carbon-bonded sulfur was the major constituent (76–87%) of total sulfur in all marshes. Reduced sulfur species, except elemental sulfur, increased seaward along the salinity gradient. Accumulation of reduced sulfur forms through sedimentation processes was significant in marsh energy flow in fresh, brackish and salt marshes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As one of the most typical wetlands, marsh plays an important role in hydrological and economic aspects, especially in keeping biological diversity. In this study, the definition and connotation of the ecological water storage of marsh is discussed for the first time, and its distinction and relationship with ecological water requirement are also analyzed. Furthermore, the gist and method of calculating ecological water storage and ecological water requirement have been provided, and Momoge wetland has been given as an example of calculation of the two variables. Ecological water use of marsh can be ascertained according to ecological water storage and ecological water requirement. For reasonably spatial and temporal variation of water storage and rational water resources planning, the suitable quantity of water supply to marsh can be calculated according to the hydrological conditions, ecological demand and actual water resources.