52 resultados para rearrangement
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We have developed the formula and the numerical code for calculating the rearrangement contribution to the single particle (s.p.) properties in asymmetric nuclear matter induced by three-body forces within the framework of the Brueckner theory extended to include a microscopic three-body force (TBF). We have investigated systematically the TBF-induced rearrangement effect on the s.p. properties and their isospin-behavior in neutron-rich nuclear medium. It is shown that the TBF induces a repulsive rearrangement contribution to the s.p. potential in nuclear medium. The repulsion of the TBF rearrangement contribution increases rapidly as a function of density and nucleon momentum. It reduces largely the attraction of the BHF s.p. potential and enhances strongly the momentum dependence of the s.p. potential at large densities and high-momenta. The TBF rearrangement effect on symmetry potential is to enhances its repulsion (attraction) on neutrons (protons) in dense asymmetric nuclear matter.
Resumo:
Within the isospin-dependent Brueckner framework, we investigate the contribution of three-body force ( TBF) rearrangement to isospin symmetry potential as well as its momentum and density dependence. In particular, we investigate the TBF rearrangement effects on the isospin splitting of neutron and proton effective masses in neutron-rich nuclear matter. We show that the rearrangement contribution of TBF to neutron and proton single-particle potentials is repulsive and increases rapidly with increasing density and momentum. At low densities, the influence of the TBF rearrangement on symmetry potential is rather small, and the TBF rearrangement effect becomes more and more pronounced as the density rises. At high densities, the contribution of TBF rearrangement increases considerably the symmetry potential and modifies remarkably the momentum dependence of the symmetry potential. In both cases with and without including the TBF rearrangement contribution, the predicted neutron effective mass in neutron-rich matter is greater than the proton effective mass. The TBF rearrangement effect is to decrease remarkably both the proton and neutron effective masses, and reduce the magnitude of neutron-proton effective mass splitting in neutron-rich matter at high densities.
Resumo:
Within the framework of microscopic Brueckner-Hatree-Fock, the contribution of the three-body force (TBF) rearrangement to the. single nucleon potential is calculated. The TBF rearrangement effects on the momentum and the density dependence of the single nucleon potential are investigated. The influence of the TBF rearrangement on the effective mass of nucleon is also discussed. It is shown that the rearrangement contribution of TBF is repulsive and momentum-dependent. The TBF rearrangement effect and its momentum dependence increase rapidly as increasing density and momentum. At high densities and high momenta, the repulsive rearrangement contribution reduces strongly the attraction of the single nucleon potential and enhances considerably the momentum dependence of the single nucleon potential.
Resumo:
We extend the Brueckner-Hartree-Fock (BHF) approach to include the three-body force (TBF) rearrangement contribution in calculating the neutron and proton single particle (s.p.) properties in isospin asymmetric nuclear matter. We investigate the TBF rearrangement effect on the momentum-dependence of neutron and proton s.p. potentials, the isospin splitting and especially its density dependence of the neutron and proton effective masses, and the isospin symmetry potential in neutron-rich nuclear matter by adopting the realistic Argonne V-18 two-body nucleon-nucleon interaction supplemented with a microscopic TBF. We find that at low densities, the TBF rearrangement effect is fairly weak, whereas the TBF induces a significant rearrangement effect on the s.p. properties at high densities and large momenta. The TBF rearrangement contribution to s.p. potential is shown to be repulsive, and it reduces considerably the attraction of the BHF s.p. potential. The repulsion from the TBF rearrangement turns out to be strongly momentum dependent at high densities and high momenta. As a consequence, it enhances remarkably the momentum dependence of the proton and neutron s.p. potentials and reduces the neutron and proton effective masses. At low densities, the TBF rearrangement effect on symmetry potential is almost negligible, while at high densities, it enlarges sizably the symmetry potential. At high enough densities, it may even change the high-momentum behavior of symmetry potential. In both cases, with and without including the TBF rearrangement contribution, the predicted neutron effective mass is larger than the proton one in neutron-rich matter within the BHF framework; i.e., the predicted isospin splitting of the proton and neutron effective masses in neutron-rich matter is such that m(n)(*)>= m(p)(*), in agreement with the recent Dirac-BHF predictions. The TBF rearrangement contribution reduces remarkably the magnitude of the proton-neutron effective mass splitting at high densities. At high enough densities, inclusion of the TBF rearrangement contribution even suppresses almost completely the effective mass splitting.
Resumo:
Diblock polyampholyte brushes with different block sequences (Si/SiO2/poly(acrylic acid)-b-poly (2-vinylpyridine) (PAA-b-P2VP) brushes and Si/SiO2/P2VP-b-PAA brushes) and different block lengths were synthesized by sequent surface-initiated atom transfer radical polymerization (ATRP). The PAA block was obtained through hydrolysis from the corresponding poly(tert-butyl acrylate). The polyampholyte brushes demonstrated unique pH-responsive behavior. In the intermediate pH region, the brushes exhibited a less hydrophilic wetting behavior and a rougher surface morphology due to the formation of polyelectrolyte complex through electrostatic interaction between oppositely charged blocks. In the low pH and high pH regions, the rearrangement of polyampholyte brushes showed great dependence on the block sequence and block length. The polyampholyte brushes with P2VP-b-PAA sequence underwent rearrangement during alternative treatment by acidic aqueous solution (low pH value) and basic aqueous solution (high pH value).
Resumo:
A new application of rare earth pyrophosphates in vapor phase Beckmann rearrangement of cyclohexanone oxime was investigated. The rare earth phosphates were characterized by means of XRD, FT-IR, NH3-TPD and water contact angle measurement. It was found that the weak surface acidity and appropriate surface hydrophobicity should be two key factors in the excellent performance of these catalysts.
Resumo:
The reaction mechanism of the Beckmann rearrangement over B2O3/gamma-Al2O3 and TS-1 in the gas phase has been investigated by isotope labeling approach. The isotopic labeled products were measured by mass spectrometry method. By exchanging oxygen with H, 180 in the rearrangement step, it was found that the exchange reaction between cyclohexanone oxime and (H2O)-O-18 over B2O3/-gamma-Al2O3 and TS-1 could only be carried out in some extent. It suggested that the dissociation of nitrilium, over solid acids be not completely free as the classical mechanism. A concept of the dissociation degree (alpha) that is defined as the ratio of the dissociated intermediate nitrilium to the total intermediate nitrilium has been proposed. By fitting the experimental values with the calculation equation of isotopic labeled products, it is obtained that a values for B2O3/-gamma-Al2O3 and TS-1 are 0.199 and 0.806 at the reaction conditions, respectively.
Resumo:
Silver underpotential deposition (UPD)-induced surface atomic rearrangement of polycrystalline gold nanofilms was probed with use of surface plasmon resonance spectroscopy (SPRs) as a novel probe tool in combination with cyclic voltammetry. Interestingly, upon repetitive electrochemical UPD and stripping of Ag, the surface structure of the resulting bare Au film is rearranged due to strong adatom-substrate interactions, which causes a large angle shift of SPR R-theta curves, in a good linear relationship with the number of UPDs, to a lower SPR angle. The n, K values of the surfacial Au monolayers before and after the repetitive Ag UPD and stripping for 27 times are found to be 0.133, 3.60 and 0.565, 9.39, respectively, corresponding to the huge shift of 1.61degrees to the left of the SPR minima. Cyclic voltammetry experiments in 0.10 M H2SO4 are carried out before and after the UPD treatment to examine the quality of the whole electrode surface and confirmed this change. To correlate the angle change in SPRs with the profile change in the cyclic voltammogram, the UPD treatment was also performed on a Au(111) textured thin film. It was therefore confirmed that the resonance position of the SPR spectrum is very sensitive to the surface crystallographic orientation of the bare Au substrates. Some surface atomic rearrangement can cause a pronounced SPR angle shift.
Resumo:
Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA (His) gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.
Resumo:
The complete mitochondrial (mt) DNA sequence was determined for a ridgetail white prawn, Exopalaemon carinicauda Holthuis, 1950 (Crustacea: Decopoda: Palaemonidae). The mt genome is 15,730 bp in length, encoding a standard set of 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes, which is typical for metazoans. The majority-strand consists of 33.6% A, 23.0% C, 13.4% G, and 30.0% T bases (AT skew = 0.057: GC skew = -0.264). A total of 1045 bp of non-coding nucleotides were observed in 16 intergenic regions,,including a major A+ T rich (79.7%) noncoding region (886 bp). A novel translocation of tRNA(Pro) and tRNA(Thr) was found when comparing this genome with the pancrustacean ground pattern indicating that gene order is not conserved among caridean mitochondria. Furthermore, the rate of Ka/Ks in 13 protein-coding genes between three caridean species is Much less than 1, which indicates a strong Purifying selection within this group. To investigate the phylogenetic relationship within Malacostraca, phylogenetic trees based oil Currently available malacostracan complete mitochondrial sequences were built with the maximum likelihood and Bayesian models. All analyses based oil nucleotide and amino acid data strongly support the monophyly of Decapoda. The Penaeidae, Reptantia, Caridea, and Meiura clades were also recovered as monophyletic groups with Strong Statistical Support. However, the phylogenetic relationships within Pleocyemata are unstable, as represented by the inclusion or exclusion of Caridea. (C) 2009 Elsevier B.V. All rights reserved.
Chromosomal rearrangement in Pectinidae revealed by rRNA loci and implications for bivalve evolution
Resumo:
Karyotype and chromosomal localization of major (18-5.8-28S) and minor (5S) ribosomal RNA genes were studied in two species of Pectinidae, zhikong (Chlamys farreri) and bay (Argopecten irradians irradians) scallops. using fluorescence in situ hybridization (FISH). C. farreri had a haploid number of 19 with a karyotype of 3m + 4sm + 7sm-st + 4st + 1st-t, and A. i. irradians had a haploid number of 16 with a karyotype of 5st + 11t. In C. farreri, the major and minor rRNA genes had one locus each and were mapped to the same chromosome-Chromosome 5. In A. i. irradians, the major rRNA genes had two loci, located on Chromosomes 4 and 8, and the 5S rRNA gene was found at a third chromosome-Chromosome 10. Results of this and other studies indicate that karyotype of A. i. irradians (n = 16, 21 arms) is secondary and derived from an ancestral karyotype similar to that of C. farreri (n = 19, 38 arms) through considerable chromosomal loss and rearrangements. The ability to tolerate significant chromosomal loss suggests that the modal karyotype of Pectinidae and possibly other bivalves with a haploid number of 19 is likely tetraploid; i.e., at least one genome duplication has occurred during the evolution of Bivalvia.
Resumo:
Nanoindentation simulations on a binary metallic glass were performed under various strain rates by using molecular dynamics. The rate-dependent serrated plastic flow was clearly observed, and the spatiotemporal behavior of its underlying irreversible atomic rearrangement was probed. Our findings clearly validate that the serration is a temporally inhomogeneous characteristic of such rearrangements and not directly dependent on the resultant shear-banding spatiality. The unique spatiotemporal distribution of shear banding during nanoindentation is highlighted in terms of the potential energy landscape (PEL) theory.
Resumo:
A transmission electron microscopy (TEM) study has been carried out to uncover how dislocations and twins accommodate large plastic strains and accumulate in very small nanocrystalline Ni grains during low-temperature deformation. We illustrate dislocation patterns that suggest preferential deformation and nonuniform defect storage inside the nanocrystalline grain. Dislocations are present in individual and dipole configurations. Most dislocations are of the 60 degrees type and pile up on (111) slip planes. Various deformation responses, in the forms of dislocations and twinning, may simultaneously occur inside a nanocrystalline grain. Evidence for twin boundary migration has been obtained. The rearrangement and organization of dislocations, sometimes interacting with the twins, lead to the formation of subgrain boundaries, subdividing the nanograin into mosaic domain structures. The observation of strain (deformation)-induced refinement contrasts with the recently reported stress-assisted grain growth in nanocrystalline metals and has implications for understanding the stability and deformation behavior of these highly nonequilibrium materials.