26 resultados para range of motion
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In addition to the layer thickness and effective Young’s modulus, the impact of the kinematic assumptions, interfacial condition, in-plane force, boundary conditions, and structure dimensions on the curvature of a film/substrate bilayer is examined. Different models for the analysis of the bilayer curvature are compared. It is demonstrated in our model that the assumption of a uniform curvature is valid only if there is no in-plane force. The effects of boundary conditions and structure dimensions, which are not-fully-included in previous models are shown to be significant. Three different approaches for deriving the curvature of a film/substrate bilayer are presented, compared, and analyzed. A more comprehensive study of the conditions regarding the applicability of Stoney’s formula and modified formulas is presented.
Resumo:
An attempt is made to determine the form of F(x), the dimensionless function of universal nature which occurs in the energy spectrum for the universal equilibrium range of fully developed turbulence, by the method of statistical mechanics without introducing any parameter of semiempirical nature. Then, the validity of the variational approach to the closure problem of turbulence theory is tested by applying it to the study of the universal equilbrium range of turbulence.
Resumo:
From observed data on lithospheric plates, a unified empirical law for plate motion,valid for continental as well as oceanic plates, is obtained in the following form: The speedof plate motion U depends linearly on a geometric parameter T_d, ratio of the sum of effectiveridge length and trench arc length to the sum of area of continental part of plate and total areaof cold sinking slab. Based on this unified law, a simple mechanical analysis shows that, themain driving forces for lithospheric plates come from push along the mid-ocean ridge andpull by the cold sinking slab, while the main drag forces consist of the viscous traction beneaththe continental part of plate and over both faces of the sinking slab. Moreover, the specific-push along ridge and pull by slab are found to be of equal magnitude.
Resumo:
The interclick intervals of captive dolphins are known to be longer than the two-way transit time between the dolphin and a target. In the present study, the interclick intervals of free-ranging baiji, finless porpoises, and bottlenose dolphins in the wild and in captivity were compared. The click intervals in open waters ranged up to 100-200 ms, whereas the click intervals in captivity were in the order of 4-28 ms. Echolocation of free-ranging dolphins appears to adapt to various distance in navigation or ranging, sometimes up to 140 m. Additionally, the difference of waveform characteristics of clicks between species was recognized in the frequency of maximum energy and the click duration. (C) 1998 Acoustical Society of America. [S0001-4966(98)06609-0].
Resumo:
A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.
Resumo:
Direct ion beam deposition of carbon films on silicon in the ion energy range of 15-500 eV and temperature range of 25-800-degrees-C has been studied. The work was carried out using mass-separated C+ and CH3+ ions under ultrahigh vacuum. The films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and transmission electron diffraction analysis. In the initial stage of the deposition, carbon implanted into silicon induced the formation of silicon carbide, even at room temperature. Further carbon ion bombardment then led to the formation of a carbon film. The film properties were sensitive to the deposition temperature but not to the ion energy. Films deposited at room temperature consisted mainly of amorphous carbon. Deposition at a higher temperature, or post-deposition annealing, led to the formation of microcrystalline graphite. A deposition temperature above 800-degrees-C favored the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation in these films was observed.
Resumo:
Optical filters capable of single control parameter-based wide tuning are implemented and studied. A prototype surface micromachined 1.3μm Si-based MOEMS (micro-opto-electro-mechanical-systems) tunable filter exhibits a continuous and large tuning range of 90 nm at 50 V tuning voltage. The filter can be integrated with Si-based photodetector in a low-cost component for coarse wavelength division multiplexing systems operating in the 1.3μm band.
Resumo:
The constitutive relations and kinematic assumptions on the composite beam with shape memory alloy (SMA) arbitrarily embedded are discussed and the results related to the different kinematic assumptions are compared. As the approach of mechanics of materials is to study the composite beam with the SMA layer embedded, the kinematic assumption is vital. In this paper, we systematically study the kinematic assumptions influence on the composite beam deflection and vibration characteristics. Based on the different kinematic assumptions, the equations of equilibrium/motion are different. Here three widely used kinematic assumptions are presented and the equations of equilibrium/motion are derived accordingly. As the three kinematic assumptions change from the simple to the complex one, the governing equations evolve from the linear to the nonlinear ones. For the nonlinear equations of equilibrium, the numerical solution is obtained by using Galerkin discretization method and Newton-Rhapson iteration method. The analysis on the numerical difficulty of using Galerkin method on the post-buckling analysis is presented. For the post-buckling analysis, finite element method is applied to avoid the difficulty due to the singularity occurred in Galerkin method. The natural frequencies of the composite beam with the nonlinear governing equation, which are obtained by directly linearizing the equations and locally linearizing the equations around each equilibrium, are compared. The influences of the SMA layer thickness and the shift from neutral axis on the deflection, buckling and post-buckling are also investigated. This paper presents a very general way to treat thermo-mechanical properties of the composite beam with SMA arbitrarily embedded. The governing equations for each kinematic assumption consist of a third order and a fourth order differential equation with a total of seven boundary conditions. Some previous studies on the SMA layer either ignore the thermal constraint effect or implicitly assume that the SMA is symmetrically embedded. The composite beam with the SMA layer asymmetrically embedded is studied here, in which symmetric embedding is a special case. Based on the different kinematic assumptions, the results are different depending on the deflection magnitude because of the nonlinear hardening effect due to the (large) deflection. And this difference is systematically compared for both the deflection and the natural frequencies. For simple kinematic assumption, the governing equations are linear and analytical solution is available. But as the deflection increases to the large magnitude, the simple kinematic assumption does not really reflect the structural deflection and the complex one must be used. During the systematic comparison of computational results due to the different kinematic assumptions, the application range of the simple kinematic assumption is also evaluated. Besides the equilibrium study of the composite laminate with SMA embedded, the buckling, post-buckling, free and forced vibrations of the composite beam with the different configurations are also studied and compared.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
In order to obtain an overall and systematic understanding of the performance of a two-stage light gas gun (TLGG), a numerical code to simulate the process occurring in a gun shot is advanced based on the quasi-one-dimensional unsteady equations of motion with the real gas effect,;friction and heat transfer taken into account in a characteristic formulation for both driver and propellant gas. Comparisons of projectile velocities and projectile pressures along the barrel with experimental results from JET (Joint European Tons) and with computational data got by the Lagrangian method indicate that this code can provide results with good accuracy over a wide range of gun geometry and loading conditions.