13 resultados para random network coding
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
针对自动最复重传(ARQ)机制在无线广播系统中吞吐量性能不佳的缺陷,提出一种基于随机网络编码的广播重传方案RNC-ARQ。对于广播节点,采用随机线性码对所有丢失包进行编码组合重传。对于接收节点,当接收的编码包累积到一定数量后可通过解码操作恢复出原始数据。该方案可有效减少重传次数,改善无线广播的吞吐量性能。基于Gilbert-Elliott模型描述的突发错误信道,建立了信道状态和节点接收处理流程合并的多状态马尔可夫模型,并以此为基础推导了RNC-ARQ方案的TQ吐量闭合解。最后,使用NS-2模拟器评估RNC-ARQ方案的性能,结果表明在突发差错信道下,基于随机网络编码重传方案的吞吐量优于传统的选择重传ARQ方案和基于异或编码的重传方案。
Resumo:
网络编码允许网络节点在传统数据转发的基础上参与数据处理,已成为提高网络吞吐量、鲁棒性和安全性的有效方法.在介绍网络编码基本原理的基础上,比较了集中式和分布式网络编码构造方法的优缺点,并对实用网络编码设计中涉及的同步、纠错、编解码速度等问题进行了评述;进而,对网络编码在无线网络、P2P系统、分布式文件存储和网络安全等领域的最新应用进行了总结;最后对网络编码的理论和应用研究的发展趋势进行了分析与展望.设计简单高效的实现机制,并与其他领域的技术如信道编码与调制、路由算法、队列调度以及流媒体技术等的结合,将是网络编码发展的一个重要趋势.
Resumo:
A fiber web is modeled as a three-dimensional random cylindrical fiber network. Nonlinear behavior of fluid flowing through the fiber network is numerically simulated by using the lattice Boltzmann (LB) method. A nonlinear relationship between the friction factor and the modified Reynolds number is clearly observed and analyzed by using the Fochheimer equation, which includes the quadratic term of velocity. We obtain a transition from linear to nonlinear region when the Reynolds numbers are sufficiently high, reflecting the inertial effect of the flows. The simulated permeability of such fiber network has relatively good agreement with the experimental results and finite element simulations.
Resumo:
This paper applies data coding thought, which based on the virtual information source modeling put forward by the author, to propose the image coding (compression) scheme based on neural network and SVM. This scheme is composed by "the image coding (compression) scheme based oil SVM" embedded "the lossless data compression scheme based oil neural network". The experiments show that the scheme has high compression ratio under the slightly damages condition, partly solve the contradiction which 'high fidelity' and 'high compression ratio' cannot unify in image coding system.
Resumo:
FSodium phosphate tellurite glasses in the system (NaPO3)(x)(TeO2)(1-x) were prepared and structurally characterized by thermal analysis, vibrational spectroscopy, X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses, the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units, and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismotic units. The combined interpretation of the O 1s XPS data and the P-31 solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather the formation of homootomic P-O-P and Te-O-Te linkages is favored over mixed P-O-Te connectivities. As a consequence of this chemical segregation effect, the spatial sodium distribution is not random, as also indicated by a detailed analysis of P-31/No-23 rotational echo double-resonance (REDOR) experiments. ACHTUNGTRENUNG(TeO2)1 x were prepared and structurally characterized by thermal analysis,vibrat ional spectroscopy,X-ray photoelectron spectroscopy (XPS) and a variety of complementary solid-state nuclear magnetic resonance (NMR) techniques. Unlike the situation in other mixed-network-former glasses,the interaction between the two network formers tellurium oxide and phosphorus oxide produces no new structural units,and no sharing of the network modifier Na2O takes place. The glass structure can be regarded as a network of interlinked metaphosphate-type P(2) tetrahedral and TeO4/2 antiprismatic units. The combined interpretation of the O 1s XPS data and the 31P solid-state NMR spectra presents clear quantitative evidence for a nonstatistical connectivity distribution. Rather,the formation of homoatomic P O P and Te O Te linkages is favored over mixed P O Te connectivities. As a consequence of this chemical segregation effect,the spatial sodium distribution is not random,as also indicated by a detailed analysis of 31P/23Na rotational echo double-resonance (REDOR) experiments.
Resumo:
First, the compression-awaited data are regarded Lis character strings which are produced by virtual information source mapping M. then the model of the virtual information source M is established by neural network and SVM. Last we construct a lossless data compression (coding) scheme based oil neural network and SVM with the model, an integer function and a SVM discriminant. The scheme differs from the old entropy coding (compressions) inwardly, and it can compress some data compressed by the old entropy coding.
Resumo:
Range and load play key roles in the problem of attacks on links in random scale-free (RSF) networks. In this paper we obtain the approximate relation between range and load in RSF networks by the generating function theory, and then give an estimation about the impact of attacks on the efficiency of the network. The results show that short-range attacks are more destructive for RSF networks, and are confirmed numerically.
Resumo:
We study the origin of robustness of yeast cell cycle cellular network through uncovering its underlying energy landscape. This is realized from the information of the steady-state probabilities by solving a discrete set of kinetic master equations for the network. We discovered that the potential landscape of yeast cell cycle network is funneled toward the global minimum, G1 state. The ratio of the energy gap between G1 and average versus roughness of the landscape termed as robustness ratio ( RR) becomes a quantitative measure of the robustness and stability for the network. The funneled landscape is quite robust against random perturbations from the inherent wiring or connections of the network. There exists a global phase transition between the more sensitive response or less self-degradation phase leading to underlying funneled global landscape with large RR, and insensitive response or more self-degradation phase leading to shallower underlying landscape of the network with small RR. Furthermore, we show that the more robust landscape also leads to less dissipation cost of the network. Least dissipation and robust landscape might be a realization of Darwinian principle of natural selection at cellular network level. It may provide an optimal criterion for network wiring connections and design.
Resumo:
Duplications and rearrangements of coding genes are major themes in the evolution of mitochondrial genomes, bearing important consequences in the function of mitochondria and the fitness of organisms. Yu et al. (BMC Genomics 2008, 9: 477) reported the complete mt genome sequence of the oyster Crassostrea hongkongensis (16,475 bp) and found that a DNA segment containing four tRNA genes (trnK(1), trnC, trnQ(1) and trnN), a duplicated (rrnS) and a split rRNA gene (rrnL5') was absent compared with that of two other Crassostrea species. It was suggested that the absence was a novel case of "tandem duplication-random loss" with evolutionary significance. We independently sequenced the complete mt genome of three C. hongkongensis individuals, all of which were 18,622 bp and contained the segment that was missing in Yu et al.'s sequence. Further, we designed primers, verified sequences and demonstrated that the sequence loss in Yu et al.'s study was an artifact caused by placing primers in a duplicated region. The duplication and split of ribosomal RNA genes are unique for Crassostrea oysters and not lost in C. hongkongensis. Our study highlights the need for caution when amplifying and sequencing through duplicated regions of the genome.