2 resultados para quotas
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Bats (Chiroptera) are the second-most abundant mammalian order in the world, occupying a diverse range of habitats and exhibiting many different life history traits. In order to contribute to this highly underrepresented group we describe the sleep architecture of two species of frugivorous bat, the greater short-nosed fruit bat (Cynopterus sphinx) and the lesser dawn fruit bat (Eonycteris spelaea). Electroencephalogram (EEG) and electromyogram (EMG) data were recorded from multiple individuals (>= 5) by telemetry over a 72-h period in a laboratory setting with light/dark cycles equivalent to those found in the wild. Our results show that over a 24-h period both species spent more time asleep than awake (mean 15 h), less than previous reported for Chiroptera (20 h). C sphinx spent significantly more of its non-rapid eye movement sleep (NREM) and rapid eye movement sleep (REM) quotas during the light phase, while E. spelaea divided its sleep-wake architecture equally between both light and dark phases. Comparing the sleep patterns of the two species found that C. sphinx had significantly fewer NREM and REM episodes than E. spelaea but each episode lasted for a significantly longer period of time. Potential hypotheses to explain the differences in the sleep architecture of C. sphinx with E. spelaea, including risk of predation and social interaction are discussed. (C) 2010 Published by Elsevier B.V.
Resumo:
Very little is known about how global anthropogenic changes will affect major harmful algal bloom groups. Shifts in the growth and physiology of HAB species like the raphidophyte Heterosigma akashiwo and the dinoflagellate Prorocentrum minimum due to rising CO2 and temperature could alter their relative abundance and environmental impacts in estuaries where both form blooms, such as the Delaware Inland Bays (DIB). We grew semi-continuous cultures of sympatric DIB isolates of these two species under four conditions: (1) 20 degrees C and 375 ppm CO2 (ambient control), (2)20 degrees C and 750 ppm CO2 (high CO2),(3) 24 degrees C and 375 ppm CO2 (high temperature), and (4) 24 degrees C and 750 ppm CO2 (combined). Elevated CO2 alone or in concert with temperature stimulated Heterosigma growth, but had no significant effect on Prorocentrum growth. P-Bmax (the maximum biomass-normalized light-saturated carbon fixation rate) in Heterosigma was increased only by simultaneous CO2 and temperature increases, whereas P-Bmax in Prorocentrum responded significantly to CO2 enrichment, with or without increased temperature. CO2 and temperature affected photosynthetic parameters alpha, Phi(max), E-k, and Delta F/F'(m) in both species. Increased temperature decreased and increased the Chl a content of Heterosigma and M Prorocentrum, respectively. CO2 availability and temperature had pronounced effects on cellular quotas of C and N in Heterosigma, but not in Prorocentrum. Ratios of C:P and N:P increased with elevated carbon dioxide in Heterosigma but not in Prorocentrum. These changes in cellular nutrient quotas and ratios imply that Heterosigma could be more vulnerable to N limitation but less vulnerable to P-limitation than Prorocentrum under future environmental conditions. In general, Heterosigma growth and physiology showed a much greater positive response to elevated CO2 and temperature compared to Prorocentrum, consistent with what is known about their respective carbon acquisition mechanisms. Hence, rising temperature and CO2 either alone or in combination with other limiting factors could significantly alter the relative dominance of these two co-existing HAB species over the next century. (c) 2007 Elsevier B.V. All rights reserved.