26 resultados para quad rotor
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.
Resumo:
In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.
Resumo:
A compact direct digital frequency synthesizer (DDFS) for system-on-chip (SoC) is developed in this paper. For smaller chip size and lower power consumption, the phase to sine mapping data is compressed by using sine symmetry technique, sine-phase difference technique, quad line approximation (QLA) technique and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98 % using the techniques mentioned above. A compact DDFS chip with 32-bit phase storage depth and a 10-bit on-chip digital to analog converter(DAC) has been successfully implemented using standard 0.35um CMOS process. The core area of the DDFS is 1.6mm(2). It consumes 167 mW at 3.3V, and its spurious free dynamic range (SFDR) is 61dB.
Resumo:
The effects ofdisk flexibility and multistage coupling on the dynamics of bladed disks with and without blade mistuning are investigated. Both free and forced responses are examined using finite element representations of example single and two-stage rotor models. The reported work demonstrates the importance of proper treatment of interstage (stage-to-stage) boundaries in order to yield adequate capture of disk-blade modal interaction in eigenfrequency veering regions. The modified disk-blade modal interactions resulting from interstage-coupling-induced changes in disk flexibility are found to have a significant impact on (a) tuned responses due to excitations passing through eigenfrequency veering regions, and (b) a design's sensitivity to blade mistuning. Hence, the findings in this paper suggest that multistage analyses may be required when excitations are expected to fall in or near eigenfrequency veering regions or when the sensitivity to blade mistuning is to be accounted for Conversely, the observed sensitivity to disk flexibility also indicates that the severity of unfavorable structural interblade coupling may be reduced significantly by redesigning the disk(s) and stage-to-stage connectivity. The relatively drastic effects of such modifications illustrated in this work indicate that the design modifications required to alleviate veering-related response problems may be less comprehensive than what might have been expected.
Resumo:
A compact direct digital frequency synthesizer (DDFS) for system-on-chip implementation of the high precision rubidium atomic frequency standard is developed. For small chip size and low power consumption, the phase to sine mapping data is compressed using sine symmetry technique, sine-phase difference technique, quad line approximation technique,and quantization and error read only memory (QE-ROM) technique. The ROM size is reduced by 98% using these techniques. A compact DDFS chip with 32bit phase storage depth and a 10bit on-chip digital to analog converter has been successfully implemented using a standard 0.35μm CMOS process. The core area of the DDFS is 1.6mm^2. It consumes 167mW at 3.3V,and its spurious free dynamic range is 61dB.
Resumo:
With the background of offshore wind energy projects, this paper studies aerodynamic performance and geometric characteristics of large capacity wind turbine rotors ( 1 to 10 MW), and the main characteristic parameters such as the rated wind speed, blade tip speed, and rotor solidity. We show that the essential criterion of a high-performance wind turbine is a highest possible annual usable energy pattern factor and a smallest possible dimension, capturing the maximum wind energy and producing the maximum annual power. The influence of the above-mentioned three parameters on the pattern factor and rotor geometry of wind turbine operated in China's offshore meteorological environment is investigated. The variation patterns of aerodynamic and geometric parameters are obtained, analyzed, and compared with each other. The present method for aerodynamic analysis and its results can form a basis for evaluating aerodynamic performance of large-scale offshore wind turbine rotors.
Resumo:
High-spin levels of 189Pt have been studied with the in-beam γ-spectroscopy method via the 176Yb(18O,5n) reaction at the beam energies of 88 and 95 MeV. The previously known νi-131/2 band has been confirmed, and its unfavored signature branch extended up to the 13/2+ state. Within the framework of the triaxial particle-rotor model, the νi-113/2 band is suggested to be associated with the 11/2[615] configuration, and to have triaxial deformation.
Resumo:
High-spin states in 189Pt have been studied experimentally using the 176Yb(18O,5n) reaction at beam energies of 88 and 95 MeV. The level scheme of189Pt has been revised significantly and extended to high-spin states.Rotational bands have been analyzed in the framework of triaxial particle-rotor model, and a γ ≈−30◦triaxial shape and a near-prolate shape have been proposed to the νi−113/2 and νf5/2(p3/2) bands, respectively. Two ΔI = 2 transition sequences with similar energies have been observed, and they have been proposed to be associated with the νi−213/2νf5/2(p3/2) configuration. The structure built on the νi−213/2νf5/2(p3/2) configuration could be interpreted theoretical calculations of the triaxial particle-rotor model if a near-oblate shape is assumed.
Resumo:
High spin states of Dy-144 have been studied through in-beam gamma-ray spectroscopy by using the reaction Mo-92(Fe-56,2p2n). It has been found that the continuation of the ground-state band forks into three Delta I=2 bands above the 8(+) state. This forking has been attributed to the alignments of pi h(11/2)(2) or nu h(11/2)(-2) configurations with the help of the systematics in neighboring nuclei. Additionally a negative-parity sideband of Delta I=2 cascades has been observed to start from the 5((-)) state and continue to a dipole band above the (13(-)) state through another negative-parity sideband of Delta I=2 cascades in between. These structures have been discussed from the viewpoint of a competition between "Magnetic Rotation" and "Anti-magnetic Rotation" based on a classical particles-plus-rotor model.
Resumo:
Excited states in Tl-188 have been studied experimentally using the Gd-157(Cl-35;4n) reaction at a beam energy of 170 MeV. A rotational band built on the pi h(9/2) x nu i(13/2) configuration with oblate deformation has been established for Tl-188. Based on the structure systematics of the oblate pi h(9/2) x nu i(13/2) bands in the heavier odd-odd Tl nuclei, we have tentatively proposed spin values for the new band in Tl-188. The pi h(9/2) x nu i(13/2) oblate band in Tl-188 shows low-spin signature inversion, and it can be interpreted qualitatively by the two-quasiparticle plus rotor model including a J-dependent p-n residual interaction.
Resumo:
High spin states in Tl-188 have been investigated via the Gd-157(Cl-35,4n) reaction at beam energy of 170 MeV. A rotational band built on the pi h(9/2) circle times nu(13/2) configuration with oblate deformation has been established. Considering the similarity between the band structure observed in odd-odd Tl nuclei, spin values have been tentatively proposed for the new band in Tl-188. The pi h(9/2) circle times nu(13/2) oblate band in Tl-188 shows low-spin signature inversion, and it can be interpreted qualitatively by the two quasiparticle plus rotor model including a J-dependent p-n residual interaction.
Resumo:
High-spin Level structure of Tl-188 has been studied via Gd-157 (Cl-35,4n) fusion-evaporation reaction at beam energy of 170MeV. A rotational band built on the pi h(9/2) circle times nu i(13/2) configuration with oblate deformation has been established. Spin values have been proposed to the pi h(9/2) circle times nu i(13/2) oblate band based on the similarities between the oblate band of Tl-188 and those in odd-odd Tl190-200. With the spin assignments, the low-spin signature inversion has been revealed for the pi h(9/2) circle times nu i(13/2) oblate band of Tl-188. The low-spin signature inversion can be interpreted qualitatively in the framework of the quasi-particles plus rotor model including a J dependent p-n residual interaction.