48 resultados para prostate toxicity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vertebrates, non-lens beta gamma-crystallins are widely expressed in various tissues, but their functions are unknown. The molecular mechanisms of trefoil factors, initiators of mucosal healing and being greatly involved in tumorigenesis, have remained

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexabromocyclododecane (HBCD) is widely used as a brominated flame retardant, and has been detected in the aquatic environment, wild animals, and humans. However, details of the environmental health risk of HBCD are not well known. In this study, zebrafish embryos were used to assess the developmental toxicity of the chemical. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to various concentrations of HBCD (0, 0.05, 0.1, 0.5, and 1.0 mg L-1) until 96 h. Exposure to 0.1, 0.5, and 1.0 mg L-1 HBCD significantly increased the malformation rate and reduced survival in the 0.5 and 1.0 mg L-1 HBCD exposure groups. Acridine orange (AO) staining showed that HBCD exposure resulted in cell apoptosis. Reactive oxygen species (ROS) was significantly induced at exposures of 0.1, 0.5, and 1.0 mg L-1 HBCD. To test the apoptotic pathway, several genes related to cell apoptosis, such as p53, Puma, Apaf-1, caspase-9, and caspase-3, were examined using real-time PCR. The expression patterns of these genes were up-regulated to some extent. Two anti-apoptotic genes, Mdm2 (antagonist of p53) and Bcl-2 (inhibitor of Bax), were down-regulated, and the activity of capspase-9 and caspase-3 was significantly increased. The overall results demonstrate that waterborne HBCD is able to produce oxidative stress and induce apoptosis through the involvement of caspases in zebrafish embryos. The results also indicate that zebrafish embryos can serve as a reliable model for the developmental toxicity of HBCD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deaths from microcystin toxication have widely been attributed to hypovolemic shock due to hepatic interstitial hemorrhage, while some recent studies suggest that cardiogenic complication is also involved. So far, information on cardiotoxic effects of MC has been rare and the underlying mechanism is still puzzling. The present study examined toxic effects of microcystins on heart muscle of rats intravenously injected with extracted MC at two doses, 0.16LD(50) (14 mu g MC-LReq kg(-1) body weight) and 1LD(50) (87 mu g MC-LReq kg(-1) body weight). In the dead rats, both TTC staining and maximum elevations of troponin I levels confirmed myocardial infarction after MC exposure, besides a serious interstitial hemorrhage in liver. In the 1LD(50) dose group, the coincident falls in heart rate and blood pressure were related to mitochondria dysfunction in heart, while increases in creatine kinase and troponin I levels indicated cardiac cell injury. The corresponding pathological alterations were mainly characterized as loss of adherence between cardiac myocytes and swollen or ruptured mitochondria at the ultrastructural level. MC administration at a dose of 1LD(50) not only enhanced activities and up-regulated mRNA transcription levels of antioxidant enzymes, but also increased GSH content. At both doses, level of lipid peroxides increased obviously, suggesting serious oxidative stress in mitochondria. Simultaneously. complex I and III were significantly inhibited, indicating blocks in electron flow along the mitochondrial respiratory chain in heart. In conclusion, the findings of this study implicate a role for MC-induced cardiotoxicity as a potential factor that should be considered when evaluating the mechanisms of death associated with microcystin intoxication in Brazil. (C) 2009 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some species of the genera Anabaena can produce various kinds of cyanotoxins, which may pose risks to environment and human health. Anabaena has frequently been observed in eutrophic freshwater of China in recent years, but its toxicity has been reported only in a few studies. In the present study, the toxicity of an Anabaena flos-aquae strain isolated from Lake Dianchi was investigated. Acute toxicity testing was performed by mouse bioassay using crude extracts from the lyophilized cultures. The mice exposed to crude extracts showed visible symptoms of toxicity and died within 10-24 h of the injection. Serum biochemical parameters were evaluated by the use of commercial diagnostic kits. Significant alterations were found in the serum biochemical parameters: alkaline phosphatase (AKP), gamma-glutamyl transpepticlase (gamma-GT), aspartate amino transferase (AST), alanine amino transferase (ALT), AST/ALT ratio, total protein content, albumin content, albumin/globulin (A/G) ratio, blood urea nitrogen (BUN), serum creatinine (Ssr), and total antioxidative capacity (T-AOC). Histopathological observations were carried out with hematoxylin and eosin (HE) stain under light microscope. Severe lesions were seen in the livers, kidneys, and lungs of the mice injected with crude extracts. The alterations of biochemical parameters were in a dose-dependent manner, and the severities of histological lesions were in the same manner. Based on biochemical and histological studies, this research firstly shows the presence of toxin-producing Anabaena species in Lake Dianchi and the toxic effects of its crude extracts on mammals. (C) 2008 Wiley Periodicals, Inc. Environ Toxicol 24: 10-18, 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfluorooetanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship, were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure to PFOS concentrations of I mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential mechanisms of developmental toxicity. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The androgen role in the maintenance of prostate epithelium is subject to conflicting opinions. While androgen ablation drives the regression of normal and cancerous prostate, testosterone may cause both proliferation and apoptosis. Several investigators note decreased proliferation and stronger response to chemotherapy of the prostate cancer cells stably expressing androgen receptor (AR), however no mechanistic explanation was offered. In this paper we demonstrate in vivo anti-tumor effect of the AR on prostate cancer growth and identify its molecular mediators. We analyzed the effect of AR on the tumorigenicity of prostate cancer cells. Unexpectedly, the AR-expressing cells formed tumors in male mice at a much lower rate than the AR-negative controls. Moreover, the AR-expressing tumors showed decreased vascularity and massive apoptosis. AR expression lowered the angiogenic potential of cancer cells, by increasing secretion of an anti-angiogenic protein, thrombospondin-1. AR activation caused a decrease in RelA, a subunit of the pro-survival transcription factor NF kappa B, reduced its nuclear localization and transcriptional activity. This, in turn, diminished the expression of its anti-apoptotic targets, Bcl-2 and IL-6. Increased apoptosis within AR-expressing tumors was likely due to the NF kappa B suppression, since it was restricted to the cells lacking nuclear (active) NF kappa B. Thus we for the first time identified combined decrease of NF kappa B and increased TSP1 as molecular events underlying the AR anti-tumor activity in vivo. Our data indicate that intermittent androgen ablation is preferable to continuous withdrawal, a standard treatment for early-stage prostate cancer. (C) 2007 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxicity of hepatotoxic microcystins produced mainly by Microcystis aeruginosa in mammals and fishes was well studied in recent years. However, there were scarcely reports in toxic effects of microcystins on isolated hepatocytes of fishes, especially investigation of microcystin-induced apoptosis and/or necrosis in carp hepatocytes. In the present study, the isolated hepatocytes of common carp were exposed to various concentrations of microcystins (0.01, 0.1, 1, 10, 100, 1000 mu g L-1) for 2, 4, 8, 16 and 24 h, respectively, and cytotoxicity of microcystins in the toxin-treated cells was determined. Results of this study showed that cytotoxicity of microcystins on carp hepatocytes was time and dose-dependent, and the approximate LC50 of microcystins in carp hepatocytes was 169.2 mu g L-1. The morphological changes typical of apoptosis, such as blebbing of cell membrane, condensation and fragmentation of cell nucleus were observed in the hepatocytes exposed to microcystins (1, 10 and 100 mu g L-1) using fluorescence and differential interference contrast microscopy. Agarose gel electrophoresis of DNA demonstrated a typical apoptotic "ladder pattern" in microcystin-treated hepatocytes after 16 h of exposure. Results of the present study indicated that the form of cell death in microcystin-treated hepatocytes depend on the exposure dose of toxin. When lower concentration of microcystins (10 and 100 mu g L-1) was used for exposure, carp hepatocytes died in apoptosis while, when higher one used (1000 mu g L-1), they died in the form of necrosis. (C) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental and field studies were conducted to evaluate the effects of NH4+ enrichment on growth and distribution of the submersed macrophyte, Vallisneria natans L, in lakes of the Yangtze River in China, based on the balance between free amino acids (FAA) and soluble carbohydrates (SC) in the plant tissue. Increase of NH4+ rather than NO3- concentrations in the water column caused FAA accumulation and SC depletion of the plant. The plant showed a unimodal pattern of biomass distribution along both FAA/SC ratios and external NH4+ concentrations, indicating that a moderate NH4-N concentration (< 0.3 mg L-1) benefited the plant, whereas the high NH4-N concentration (> 0.56 mg L-1) eliminated the plant completely. Therefore, 0.56 mg NH4-N mg L-1 in the water column was taken as the upper limit for V. natans in lakes of the Yangtze River basin. The mesocosm experiment showed that at a high external NH4-N (0.81 mg L-1), V. natans failed to propagate with a loss of half SC content (5 mg g(-1) DW) in the rhizomes, indicating that the consumption of carbohydrates for detoxification of excess NH4+ into non-toxic FAA significantly diminished carbohydrate supply to the rhizomes. This might consequently inhibit the vegetative reproduction of the plant, and also might be an important cause for the decline and disappearance of the plant with eutrophication. The present study for the first time reports substantial ecophysiological evidences for NH4+ stress to submersed macrophytes, and indicates that NH4+ toxicity arising from eutrophication probably plays a key role in the deterioration of submersed macrophytes like V. natans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daily intake and accumulation of microcystins (MCYSTs, MCs) in silver carp (Hypophthalmichthys molitrix) were investigated under lab conditions by feeding the fish exclusively with fresh toxic Microcystis bloom at a density of 6 x 10(9) algal cells L-1. The medial lethal dose (LD50) of microcystin-LR to silver carp was estimated to be 270 mu g kg(-1) body-weight, underlining its strong resistance to toxic Microcystis bloom. It can survive after being ingested with high doses of microcystins (about 10 mg kg(-1)) during the 28-days feeding experiment. Enzyme-linked immuno-sorbent assay results show that microcystin concentrations in muscle and liver are 1.57 +/- 0.31 mu g kg(-1) and 4.28 +/- 1.64 mg kg(-1) fresh weight. The former is much lower than the World Health Organization limit recommended for human consumption. These results suggest that silver carps can be widely used in cyanobacterial bloom control, and consumption of fish muscles is safe for human beings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microcystins are cyclic heptapeptide hepatoxins produced by many species of cyanobacteria. The toxic effects and mechanism of microcystins on animals have been well studied both in vivo and in vitro. It was also reported that microcystins had adverse effects on plants. However, to our knowledge, there is no information about the toxic effects and mechanism of microcystins on plant suspension cells. In this study, Arabidopsis thaliana suspension cells were exposed to a range dose of microcystin-RR. Lipid peroxidation, a main manifestation of oxidative damage, was studied and a time- and dose-dependent increase in malondiadehyde was observed. In contrast, glutathione (GSH) levels in the cells decreased after 48 h treatment with 1 and 5 mg/L of microcystin-RR. The activities of superoxide dismutase (SOD) and catalase (CAT) increased significantly after 48 h exposure to I and 5 mg/L of microcystin-RR, but glutathione S-transferase (GST) activity showed no difference compared with the control. These results clearly indicate that microcystin-RR is able to cause oxidative damage in A. thaliana suspension cells. Decrease of GSH content and increases of SOD and CAT activities reveal that the antioxidant system may play an important role in eliminating or alleviating the toxicity of microcystin-RR. The possible toxicity mechanism of microcystin-RR on the A. thaliana suspension cells is also discussed in this paper. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study was conducted to assess the potential toxicity of the effluent from a large sewage treatment plant (GBD-STP) in Beijing. Japanese medakas (Oryzias latipes) at reproduction active period were exposed to a serial of graded concentrations of the effluent or 100 ng l(-1) of 17-alpha-ethinylestradiol (EE2, positive control). Growth, gonadosomatic index (GSI), hepatosomatic index (HSI), reproductive success, induction potency of vitellogenin (VTG) in male fish and that of 7-ethoxyresorufin-o-deethylase activity (EROD) in male fish liver were used as test endpoints. The growth suppression of fish was observed in a dose-dependent manner, resulting in significant differences in both body length and body weight of medaka above 5% effluent. This effluent can inhibit the growth of gonad of medakas and are more sensitive to male than to female. At exposure concentration of 40% and higher, there was an unexpected decrease of HSI values, which may be resulted from sub-lethal toxicity of effluent to fish liver. VTG of plasma in males were induced in all exposure concentration levels, but not in a dose-dependent manner. The concentration of 5% effluent would be the lowest observed adverse effect level (LOAEL) affecting reproductive success when examining fertile individuals, fecundity and fertilization rate. The overt CYP1A response and higher reproductive toxicity may be indicative of low process efficiency of this STP. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshwater Microcystis may form dense blooms in eutrophic lakes. It is known to produce a family of related cyclic hepatopeptides (microcystins, MC) that constitute a threat to aquatic ecosystems. Most toxicological studies of microcystins have focused on aquatic animals and plants, with few examining the possible effects of microcystins on phytoplankton. In this study we chose the unicellular Synechococcus elongatus (one of the most studied and geographically most widely distributed cyanobacteria in the picoplankton) as the test material and investigated the biological parameters: growth, pigment (chlorophyll-a, phycocyanin), photosynthetic activity, nitrate reductase activity, and protein and carbohydrate content. The results revealed that microcystin-RR concentrations above 100 mug (.) L-1 significantly inhibited the growth of Synechococcus elongatus. In addition, a change in color of the toxin-treated algae (chlorosis) was observed in the experiments. Furthermore, MC-RR markedly inhibited the synthesis of the pigments chlorophyll-a and phycocyanin. A drastic reduction in photochemical efficiency of PSII (F-v/F-m) was found after a 96-h incubation. Changes in protein and carbohydrate concentrations and in nitrate reductase activity also were observed during the exposure period. This study aimed to evaluate the mechanisms of microcystin toxicity on a cyanobacterium, according to the physiological and biochemical responses of Synechococcus elongatus to different doses of microcystin-RR. The ecological role of microcystins as an allelopathic substance also is discussed in the article. (C) 2004 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cypermethrin is a synthetic pyrethroid that is particularly toxic to crustaceans. It is therefore applied as a chemotherapeutant in farms for the treatment of pests. The effective concentrations of cypermethrin on the inhibition of Scenedesmus ohliquus growth at 96h (96h EC50) were determined to be 50, 100, 150, 200, and 250mg/L. Algal growth, pigment fractions, and the activity of superoxide dismutase (SOD) in the algal cells were measured in the exponential phase after exposure to cypermethrin. The results show that higher concentration of cypermethrin is inhibitory for growth and other metabolic activities and the 96h EC50 of cypermethrin to S. ohliquus is 112 +/- 9 mg/L; the potential application of SOD activity in S. ohliquus as a sensitive biomarker for cypermethrin exposure is also discussed. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The acute toxic effect of the pesticide cypermethrin to Daphnia magna HB was examined. D. magna HB was exposed to cypermethrin at concentrations of 0, 1, 3, 5, 7, and 9 mg/L for 24 In. Data showed that the 24 h-LC50 of cypermthrin on D. magna HB was 4.81 mg/L. In contrast, the 24 h-LC50 of K2Cr2O7 (the national standard toxicant) to Daphnia magna was 0.38 mg/L in the current study. Results indicated that the Daphnia magna was very sensitive to pesticides. In addition, the effects of the culture condition(such as hardness, temperature and DO etc.) on Daphnia magna HB was also studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sub-chronic toxicity experiment was conducted to examine tissue distribution and depuration of two microcystins (microcystin-LR and microcystin -RR) in the phytoplanktivorous filter-feeding silver carp during a course of 80 days. Two large tanks (A, B) were used, and in Tank A, the fish were fed naturally with fresh Microcystis viridis cells (collected from a eutrophic pond) throughout the experiment, while in Tank B, the food of the fish were M. viridis cells for the first 40 days and then changed to artificial carp feed. High Performance Liquid Chromatography (HPLC) was used to measure MC-LR and MC-RR in the M. viridis cells, the seston, and the intestine, blood, liver and muscle tissue of silver carp at an interval of 20 days. MC-RR and MC-LR in the collected Microcystis cells varied between 268-580 and 110-292 mug g(-1) DW, respectively. In Tank A, MC-RR and MC-LR varied between 41.5-99.5 and 6.9-15.8 mug g(-1) DW in the seston, respectively. The maximum MC-RR in the blood, liver and muscle of the fish was 49.7, 17.8 and 1.77 mug g(-1) DW, respectively. No MC-LR was detectable in the muscle and blood samples of the silver carp in spite of the abundant presence of this toxin in the intestines (for the liver, there was only one case when a relatively minor quantity was detected). These findings contrast with previous experimental results on rainbow trout. Perhaps silver carp has a mechanism to degrade MC-LR actively and to inhibit MC-LR transportation across the intestines. The depuration of MC-RR concentrations occurred slowly than uptakes in blood, liver and muscle, and the depuration rate was in the order of blood > liver > muscle. The grazing ability of silver carp on toxic cyanobacteria suggests an applicability of using phytoplanktivorous fish to counteract cyanotoxin contamination in eutrophic waters. (C) 2003 Elsevier Ltd. All rights reserved.