8 resultados para pico de lactação
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
以硅酸四乙酯(TEOS)和甲基三乙氧基硅烷(MTEOS)为前驱材料,用溶胶-凝胶(sol-gel)方法在钛宝石表面制备得到均匀性良好且具有高激光损伤阈值的有机硅复合凝胶增透膜。膜层在钛宝石激光器输出波段(750~850nm)的增透效果显著,其平均透过率超过98.6%;激光破坏阈值为2.2J/cm^2(800nm,300ps);膜层表面均匀性达到激光波面的要求,在皮秒、飞秒超短脉冲高功率激光领域具有应用价值。溶胶的性能测试结果表明,溶胶粘度和成膜折射率均随溶液中CH3SiO1.5溶胶体含量的增加而增大,而膜
Resumo:
神经干细胞(NSC)是中枢神经系统中具有自我更新能力和多种分化潜能的细胞,是脊髓损伤(SCI)后再生修复的理想材料和基因载体。我们探讨了Lentivirus介导分泌神经营养因子-3(NT-3)的基因工程NSC移植治疗SCI的可行性,以期为SCI后功能恢复的实验研究以及进一步临床研究提供基础资料。材料与方法一、实验材料1.试剂与来源:DMEM/F12、B27、N2(Gibco公司),bFGF(Sigma公司),Nestin抗体、NF-200抗体、GFAP抗体(武汉博士德公司),羊抗鼠NT-3抗体(USB公司),超信号West Pico化学发光底物试剂盒(Pierce34079ZZ)、人胚肾293T细胞购自武汉大学保藏中心,携带NT-3和绿色荧光蛋白(GFP)的Lentivirus的各种质粒由美国迈阿密大学Oudega M教授提供。2.实验动物:Wistar大鼠由成都军区昆明总医院实验动物中心提供。二、实验方法1.NSC的分离培养:取孕14d的Wistar胎鼠皮层组织,分离筋膜和血管,反复剪碎,再用200目细胞筛过滤,转入DMEM/F12,加B27添加剂、bFGF(20ng/ml);6~7d传代。
Resumo:
M.8641是从武汉东湖分离培养的一株有毒的铜绿微囊藻(Microcystis aeruginosa),它产生两种环状短肽肝毒素。经凝胶过滤及HPLC等过程纯化,Waters Pico Tag系统测定,其主毒素(毒素Ⅰ)的氨基酸组成为:Glu(1),β-Masp(1),Ala(Ⅰ),Arg(2),Mdha(1),FAB-MS和MS/MS测定分子量为m/z1038,元素组成为C_(49)H_(76)O_(12)N_(13)。毒素Ⅱ的氨基酸组成,除一分子Arg为Leu取代外,其余与毒素Ⅰ相同,分子量m/z 9
Resumo:
A high yielding rice variety mutant (Oryza sativa L., Zhenhui 249) with low chlorophyll b (Chl b) has been discovered in natural fields. It has a quality character controlled by a pair of recessive genes (nuclear gene). The partial loss of Chl b in content affects the efficiency of light harvest in a light harvest complex (LHC), thus producing the difference of the exciting energy transfer and the efficiency of photochemistry conversion between the mutant and wild-type rice in photosynthetic unit. The efficiency of utilizing light energy is higher in the mutant than that in the wildtype rice relatively. For further discussion of the above-mentioned difference and learning about the mechanism of the increase in the photochemical efficiency of the mutant, the pico-second resolution fluorescence spectrum measurement with delay-frame-scanning single photon counting technique is adopted. Thylakoid membranes of the mutant and the wild-type rice are excited by an Ar+ laser with a pulse width of 120 ps, repetition rate of 4 MHz and wavelength of 514 nm. Compared with the time and spectrum property of exciting fluorescence, conclusions of those ultrafast dynamic experiments are: 1) The speeds of the exciting energy transferred in photo-system I are faster than that in photo-system II in both samples. 2) The speeds of the exciting energy transfer of mutant sample are faster than those of the wildtype. This might be one of the major reasons why the efficiency of photosynthesis is higher in mutant than that in the wild-type rice.
Resumo:
本论文通过2007年科学院创新项目KC2007-3航次现场调查和实验室微藻培养实验,研究了多胺对几种赤潮藻生长的影响,不同赤潮水体对几种赤潮藻生长的影响,硅藻赤潮消亡后海水几种溶解有机物的空间分布和时间变化及其与赤潮演替的关系,对实验室和现场观察到的现象进行了深入分析,得到了以下结论: 较低浓度的多胺对东海原甲藻和塔玛亚历山大藻等甲藻的促进作用要高于对中肋骨条藻的促进作用。多胺可能在硅藻赤潮向甲藻赤潮的演替中起了一定推进作用。 东海赤潮演替过程中典型的赤潮水体滤液对培养藻种生长的抑制或促进作用与现场演替过程相契合,化感物质是硅藻赤潮演替的影响因素之一。 东海硅藻赤潮消亡后的海水有较强的类蛋白荧光,主要荧光峰是类酪氨酸B峰。在赤潮消亡主要海区FIB/FIs较大,这表明类蛋白溶解有机物主要是由赤潮藻破碎分解产生的类酪氨酸。S峰、A峰和C峰三者之间互相呈较好的正相关,且3者的荧光强度与盐度都呈显著的线性负相关,其分布均呈现出近岸高远岸低的特点,这表明江浙沿岸水的输入是其共同的重要来源。 单糖、多糖、总糖和DOC与真光层生物活动密切相关。局部高值是之前赤潮高发的藻类产生的。 B峰强度与叶绿素a之间存在一定的负相关,类酪氨酸可能在pico-flagellates暴发过程中作为营养源或生长刺激物。
Resumo:
Phytoplankton size structure plays a significant role in controlling the carbon flux of marine pelagic ecosystems. The mesoscale distribution and seasonal variation of total and size-fractionated phytoplankton biomass in surface waters. as measured by chlorophyll a (Chl a), was studied in the Southern Yellow Sea using data from four cruises during 2006-2007. The distribution of Chl a showed a high degree of spatial and temporal variation in the study area. Chl a concentrations were relatively high in the summer and autumn, with a mean of 142 and 1.27 mg m(-3), respectively. Conversely, in the winter and spring. the average Chl a levels were only 098 and 0.99 mg m(-3) Total Chl a showed a clear decreasing gradient from coastal areas to the open sea in the summer, autumn and winter cruises. Patches of high Chl a were observed in the central part of the Southern Yellow Sea in the spring due to the onset of the phytoplankton bloom. The eutrophic coastal waters contributed at least 68% of the total phytoplankton biomass in the surface layer. Picophytoplankton showed a consistent and absolute dominance in the central region of the Southern Yellow Sea (>40%) in all of the cruises, while the proportion of microphytoplankton was the highest in coastal waters The relative proportions of pico- and nanophytoplankton decreased with total biomass, whereas the proportion of the micro-fraction increased with total biomass. Relationships between phytoplankton biomass and environmental factors were also analysed. The results showed that the onset of the spring bloom was highly dependent on water column stability. Phytoplankton growth was limited by nutrient availability in the summer due to the strong thermocline. The combined effects of P-limitation and vertical mixing in the autumn restrained the further increase of phytoplankton biomass in the Surface layer. The low phytoplankton biomass in winter was caused by vertical dispersion due to intense mixing. Compared with the availability of nutrients. temperature did not seem to cause direct effects on phytoplankton biomass and its size structure. Although interactions of many different environmental factors affected phytoplankton distributions. hydrodynamic conditions seemed to be the dominant factor. Phytoplankton size structure was determined mainly by the size-differential capacity in acquiring resource. Short time scale events, such as the spring bloom and the extension of Yangtze River plume, can have substantial influences, both on the total Chl a concentration and on the size structure of the phytoplankton. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Dilution experiments were performed to examine the growth rate and grazing mortality rate of size-fractionated phytoplankton at three typical stations, inside and outside the bay, in the spring and summer of 2003 in the Jiaozhou Bay, China. in spring, the phytoplankton community structure was similar among the three stations, and was mainly composed of nanophytoplankton, such as, Skeletonema costatum and Cylindrotheca closterium. The structure became significantly different for the three stations in summer, when the dominant species at Stas A, B and C were Chaetoceros curvisetus, Pseudo-nitzschia delicatissima, C. affinis, C. debilis, Coscinodiscus oculus-iridis and Paralia sulcata respectively. Tintinnopsis beroidea and T. tsingtaoensis were the dominant species in spring, whereas the microzooplankton was apparently dominated by Strombidium sp. in summer. Pico- and nanophytoplankton had a relatively greater growth rate than microzooplankton both in spring and summer. The growth rate and grazing mortality rate were 0.18 similar to 0.44 and 0.12 similar to 1.47 d(-1) for the total phytoplankton and 0.20 similar to 0.55 and 0.21 similar to 0.37 d-1 for nanophytoplankton in spring respectively. In summer, the growth rate and grazing mortality rate were 0.38 similar to 0.71 and 0.27 similar to 0.60 d-1 for the total phytoplankton and 0.11 similar to 1.18 and 0.41 similar to 0.72 d(-1) for nano- and microphytoplankton respectively. The carbon flux consumed by microzooplankton per day was 7.68 similar to 39.81 mg/m(3) in spring and 12.03 similar to 138.22 mg/m(3) in summer respectively. Microzooplankton ingested 17.56%similar to 92.19% of the phytoplankton standing stocks and 31.77%similar to 467.88% of the potential primary productivity in spring; in contrast, they ingested 34.60%similar to 83.04% of the phytoplankton standing stocks and 71.28%similar to 98.80% of the potential primary productivity in summer. Pico- and nanophytoplankton appeared to have relatively greater rates of growth and grazing mortality than microphytoplankton during the experimental period. The grazing rate of microzooplankton in summer was a little bit greater than that in spring because of the relatively higher incubation temperature and different dominant microzooplankton species. Microzooplankton preferred ingesting nanophytoplankton to microphytoplankton in spring, while they preferred ingesting picophytoplankton to nanophytoplankton and microphytoplankton in summer. Compared with the results of dilution experiments performed in various waters worldwide, the results are in the middle range.
Resumo:
Seasonal investigations of size-fractionated biomass and production were carried out from February 1992 to May 1993 in Jiaozhou Bay, China. Microplankton assemblages were separated into three fractions: pico-(0.7-2 mu m), nano- (2-20 mu m) and netplankton (20-200 mu m). The biomass was measured as chlorophyll a (Chl a), particulate organic carbon (POC) and particulate organic nitrogen (PON). The production was determined by C-14 and N-15 tracer techniques. The seasonal patterns in biomass, though variable, were characterized by higher values in spring and lower values in autumn and summer (for Chl a only). The seasonal patterns in production, on the other hand, were more clear with higher values occurring in summer and spring, and lower values occurring in autumn and winter. Averaged over the whole study period, the respective proportions of total biomass accounted for by net-, nano- and picoplankton were 26, 45 and 29% for Chl a, 32, 33 and 35% for POC, and 26, 32 and 42% for PON. The contributions to total primary production by net-, nano- and picoplankton were 31, 35 and 34%, respectively. The respective proportions of total NH4+-N uptake accounted for by net-, nano- and picoplankton were 28, 33 and 39% in the daytime, and 10, 29 and 61% at night. The respective contributions to total NO3--N uptake by net-, nano- and picoplankton were 37, 40 and 23% in the daytime, and 13, 23 and 64% at night. Some comprehensive ratios, including C/N biomass ratio, Chl a/C ratio, C uptake/Chl a ratio, C:N uptake ratio and the f-ratio, were also calculated size separately, and their biological and ecological meanings are discussed.