651 resultados para photosynthetic CO2 affinity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth and activity of photosynthetic CO2 uptake and extracellular carbonic anhydrase (CA(ext)) of the marine diatom Skeletonema costatum were investigated while cultured at different levels of CO2 in order to see its physiological response to different CO2 concentrations under either a low (30 mumol . m(-2) . s(-1)) or high (210 mumol . m(-2) . s(-1)) irradiance. The changes in CO2 concentrations (4-31 mumol/L) affected the growth and net photosynthesis to a greater extent under the low than under the high light regime. CAext was detected in the cells grown at 4 mumol/L CO2 but not at 31 and 12 mumol/L CO2, with its activity being about 2.5-fold higher at the high than at the low irradiance. Photosynthetic CO2 affinity (1/K-1/2(CO2)) of the cells decreased with increased CO2 concentrations in culture. The cells cultured under the high-light show significantly higher photosynthetic CO2 affinity than those grown at the low-light level. It is concluded that the regulations of CA(ext) activity and photosynthetic CO2 affinity are dependent not only on CO2 concentration but also on light availability, and that the development of higher CA(ext) activity and CO2 affinity under higher light level could sufficiently support the photosynthetic demand for CO2 even at low level of CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosynthetic performance was examined in Skeletonema costatum (Greville) Cleve. under 12: 12-h light: dark (LD) cycle at ambient CO2 (350 muL L-1) and elevated CO2 (1000 muL L-1). At ambient CO2, the cellular chlorophyll a content, the light-saturated photosynthetic rate (P-m), the initial slope of the light saturation curves ( a), the photochemical efficiency of PSII (F-v/F-m), the apparent carboxylating efficiency (ACE) and the photosynthetic affinity for CO2 [1/K-m (CO2)] all showed rhythmical changes with different amplitudes during the light period. The P-m had similar changing pattern in the light period with the ACE and 1/K-m (CO2) rather than with the alpha and F-v/F-m, indicating that rhythmical changes of photosynthetic capacity may be mainly controlled by the activity of C- reduction associated with CO2 uptake during the light period. The CO2 enrichment reduced the ACE and the affinity to CO2, and increased the a, cellular chlorophyll a content and P m based on cell number. By contrast, the changing patterns of all photosynthetic parameters examined here during the light period had almost the same for cells grown at ambient CO2 and elevated CO2, suggesting that the photosynthetic rhythms of S. costatum are not affected by CO2 enrichment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanism of inorganic carbon (C-i) acquisition by the economic brown macroalga, Hizikia fusiforme (Harv.) Okamura (Sargassaceae), was investigated to characterize its photosynthetic physiology. Both intracellular and extracellular carbonic anhydrase (CA) were detected, with the external CA activity accounting for about 5% of the total. Hizikia fusiforme showed higher rates of photosynthetic oxygen evolution at alkaline pH than those theoretically derived from the rates of uncatalyzed CO2 production from bicarbonate and exhibited a high pH compensation point (pH 9.66). The external CA inhibitor, acetazolamide, significantly depressed the photosynthetic oxygen evolution, whereas the anion-exchanger inhibitor 4,4'-diisothiocyano-stilbene-2,2'-disulfonate had no inhibitory effect on it, implying the alga was capable of using HCO3- as a source of C-i for its photosynthesis via the mediation of the external CA. CO2 concentrations in the culture media affected its photosynthetic properties. A high level of CO2 (10,000 ppmv) resulted in a decrease in the external CA activity; however, a low CO2 level (20 ppmv) led to no changes in the external CA activity but raised the intracellular CA activity. Parallel to the reduction in the external CA activity at the high CO2 was a reduction in the photosynthetic CO2 affinity. Decreased activity of the external CA in the high CO2 grown samples led to reduced sensitiveness of photosynthesis to the addition of acetazolamide at alkaline pH. It was clearly indicated that H. fusiforme, which showed CO2-limited photosynthesis with the half-saturating concentration of C-i exceeding that of seawater, did not operate active HCO3- uptake but used it via the extracellular CA for its photosynthetic carbon fixation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Intertidal macroalgae experience continual alternation of photosynthesis between aquatic state at high tide and aerial state at low tide. The comparative photosynthetic responses to inorganic carbon were investigated in the common intertidal macroalga Ulva lactuca L. along the coast of Shantou between aquatic and aerial state. The inorganic carbon dissolved in seawater at present could fully (at 10 degreesC or 20 degreesC) or nearly (at 30 degreesC) saturate the aquatic photosynthesis of U. lactuca. However, the aerial photosynthesis was limited by current ambient atmospheric CO2 level, and such a limitation was more severe at higher temperature (20degrees - 30degrees T) than at lower temperature (10 T). The carbon-saturated maximal photosynthesis of U. lactuca under aerial state was much greater than that under aquatic state at 10 degreesC and 20 degreesC, while the maximal photosynthesis under both states was similar at 30 degreesC. The aerial values of K-m (CO2) for photosynthesis were higher than the aquatic values. On the contrary, the values of apparent photosynthetic CO2 conductance under aerial state were considerably lower than that under aquatic state. It was concluded that the increase of atmospheric CO2 would enhance the primary productivity of U. lactuca through stimulating the photosynthesis under aerial state during low tide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The alpine meadow ecosystem on the Qinghai-Tibetan Plateau is characterized by low temperatures because of its high elevation. The low-temperature environment may limit both ecosystem photosynthetic CO2 uptake and ecosystem respiration, and thus affect the net ecosystem CO2 exchange (NEE). We clarified the low-temperature constraint on photosynthesis and respiration in an alpine meadow ecosystem on the northern edge of the plateau using flux measurements obtained by the eddy covariance technique in two growing seasons. When we compared NEE during the two periods, during which the leaf area index and other environmental parameters were similar but the mean temperature differed, we found that NEE from 9 August to 10 September 2001, when the average temperature was low, was greater than that during the same period in 2002, when the average temperature was high, but the ecosystem gross primary production was similar during the two periods. Further analysis showed that ecosystem respiration was significantly higher in 2002 than in 2001 during the study period, as estimated from the relationship between temperature and nighttime ecosystem respiration. The results suggest that low temperature controlled the NEE mainly through its influence on ecosystem respiration. The annual NEE, estimated from 15 January 2002 to 14 January 2003, was about 290 g CO2 m(-2) year(-1). The optimum temperature for ecosystem NEE under light-saturated conditions was estimated to be around 15 degrees C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photosynthetic performances of Porphyra haitanensis thalli were investigated in order to understand its mechanisms for exogenous carbon acquisition during emersion at low tide. The emersed photosynthesis was studied by altering the pH value in the water film on the thalli surface, treating them with carbonic anhydarase inhibitors (acetazolamide and 6-ethoxyzolamide), adjusting the CO2 concentrations in the air, and comparing the theoretical maximum CO2 supply rates within the adherent water film with the observed photosynthetic CO2 uptake rates. It was found that the principal exogenous inorganic carbon source for the photosynthesis of P. haitanensis during emersion was atmospheric CO2. The driving force of CO2 flux across the water film was the CO2 concentration gradient within it. Carbonic anhydrase accelerated both extracellular and intracellular CO2 transport. The emersed photosynthesis of P. haitanensis was limited by the present atmospheric CO2 level, and would be enhanced by atmospheric CO2 rise that would trigger global warming.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experiments were conducted in an alpine Kobresia humilis meadow near Haibei Alpine Meadow Ecosystem Research Station (37degrees29'-37degrees45'N, 101degrees12'-101degrees33'E; altitude 3200 m). Effects of enhanced ultraviolet-B (UV-B) radiation on photosynthesis of the alpine plants of Saussurea superba and Gentiana straminea were investigated. Both species were exposed to a UV-B-BE density at 15.80 kJ m(-2) per day, simulating nearly 14% ozone (O-3) reduction during the plant growing season. Neither photosynthetic CO2 uptake rate nor photosynthetic O-2 evolution rate were decreased after a long period of enhanced UV-B radiation treatment. On the contrary, there was a tendency to increase of both parameters in both species. The photosynthetic pigments were also increased, when expressed on a leaf area basis. UV-B absorbing compounds, detected by the absorbance values at 300 mm, had a tendency to increase in both species after enhanced UV-B radiation. After long-term exposure of plants to enhanced UV-B radiation, leaf morphology was also affected. Leaf thickness in both S. superba and G. straminea were increased significantly (P < 0.001). This supports our hypothesis that the increase of leaf thickness in both species after long-term exposure of enhanced UV-B radiation could compensate for the photodestruction of photosynthetic pigments when light passes through the leaf. Therefore, photosynthesis is not reduced in either species when expressed on leaf area basis. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Diurnal photosynthesis of Nostoc flagelliforme was investigated at varied levels of CO2 concentrations and desiccation in order to estimate the effects of enriched CO2 and watering on its daily production. Photosynthetic activity was closely correlated with the desiccated status of the algal mats, increased immediately after watering, reached a maximum at moderate water loss, and then declined with further desiccation. Increased CO2 concentration enhanced the diurnal photosynthesis and raised the daily production. Watering twice per day enhanced the daily production due to prolonged period of active photosynthesis. The values of daily net production were 1321280 mumol CO2 g (d. wt)(-1) d(-1), corresponding to about 0.6-6.1% daily increase in dry weight. High-CO2-grown mats required higher levels of photon flux density to saturate the alga's photosynthesis in air. Air-grown mats showed higher photosynthetic affinity for CO2 and higher levels of dark respiration compared with high-CO2-grown samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The physiological responses of Nitzschia palea Kutzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 mu l/L increased the dissolved inorganic carbon (DIC) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher I (k) values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO3 (-) in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO3 (-) and CO2. Although doubled CO2 level would enhance the biomass of N. palea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of N. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The lunar day differs in length from the solar day so that times of low tide vary from day to day. Thus, aerial exposure of intertidal seaweeds may be during the day or during the night. We measured photosynthetic CO, assimilation rates of the intertidal green macroalga Ulva lactuca during exposures of varied daily timings during sunny days of summer to establish how photosynthetic performance responds to emersion timing under varied CO2 levels [at ambient (360 ppmv) and 2x ambient (720 ppmv) atmospheric CO2 concentrations]. There was an increase in net photosynthetic rates following some duration of exposure when the initial timing of exposure occurred during early morning (06.30 h) and late afternoon (17.15 h). In contrast, net rates exhibited a sharp decline with exposure duration when the initial timing of exposure occurred at 09.30 h, 15.30 h and especially at noon (12.30 h), implying the occurrence of a severe photoinhibition resulting from mid-day insolation. Doubled atmospheric CO2 concentration significantly enhanced the emersed photosynthetic rates, indicating that the emersed photosynthesis is CO2-limited at ambient CO2 levels. However, increasing CO2 barely stimulates the emersed photosynthetic rates during mid-day insolation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The characteristics of inorganic carbon assimilation by photosynthesis were investigated in male and female gametophytes and juvenile sporophytes of Undaria pinnatifida. Gametophytes and sporophytes have detectable extracellular and intracellular carbonic anhydrase (CA) activity, and the CA inhibitor, acetazolamide (AZ), significantly inhibited their photosynthesis O-2 evolution. In pH-drift experiments, it was found that gametophytes did not raise the final pH of seawater above 9.00 (CO2 concentrations of about 2.2 mu M), indicating a low ability to utilize inorganic carbon. In contrast, sporophytes rapidly raised pH to over 9.53 and depleted the free CO2 Concentration to less than 0.16 mu M. The apparent photosynthetic affinity for CO2 was almost the same for gametophytes and sporophytes, whereas gametophytes had a much lower affinity for HCO3- than sporophytes. Two inhibitors of band 3 anion exchange protein (DIDS and SITS) inhibited the photosynthesis of gametophytes but not that of sporophytes. It was indicated that both gametophytes and sporophytes were capable of using HCO3-, which involved the external CA activity, and a direct HCO3- use also occurred in the former, but the latter showed a greater capacity of HCO3- use than the former. In addition, male and female gametophytes did not show great differences in the inorganic carbon uptake mechanism underlying photosynthesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Photosynthetic responses of rewetted Nostoc flagelliforme to CO2, desiccation, light and temperature were investigated under emersed conditions in order to characterize its ecophysiological behaviour in nature. Net photosynthesis increased to a maximum rate at about 30 % water loss, then decreased, while dark respiration always decreased with the progress of desiccation. Light-saturated photosynthesis and dark respiration were significantly reduced at 8 degreesC, but remained little affected by changes of temperature within the range of 15-35 degreesC. Photosynthetic efficiency (alpha) was maximal at the beginning of desiccation and then reduced with increased water loss. Saturating irradiance for photosynthesis was about 194-439 mu mol quanta m(-2) s(-1), being maximal at about 30 % water loss. No photoinhibition was observed at irradiances up to 1140 mu mol m(-2) s(-1). Light compensation points were about 41-93 mu mol m(-2) s(-1). Photosynthesis of N. flagelliforme was CO2-limited at the present atmospheric CO2 level. The CO2-saturated photosynthesis increased with increase of irradiance (190-1140 mu mol m(-2) s(-1)) and temperature (8-25 degreesC) and decreased significantly with water loss (0-75 %). Photosynthetic affinity for CO2 was sensitive to temperature and irradiance. The CO2 compensation point (Gamma) increased significantly with increased temperature and was insensitive to irradiance. Desiccation did not affect Gamma values before water loss exceeded 70 %. Photorespiratory CO2 release did not occur in N. flagelliforme at the current atmospheric CO2 level.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A mutant of Anabaena sp. strain PCC7120 requiring high CO2 was generated using Tn5 mutagenesis. This is the first data for a filamentous cyanobacterium. The mutant was capable of growing at 5% CO2, but incapable of growing at air levels of CO2. Southern hybridization analysis indicated that the Anabaena genome was inserted by the transposon at one site. The apparent photosynthetic affinity of the mutant to external dissolved inorganic carbon (DIC) was about 300 times lower that of the wild type (WT), and the medium alkalization rate as well as the carboxysomal carbonic anhydrase activity of the mutant was also lower than those of the WT. When the mutant was transferred from the culture medium bubbled with 5% CO2 to higher DIC (8.4% CO2) or 1% CO2, it showed similar responses to the WT. However, aberrant carboxysomes were found in the mutant cells through ultrastructural analysis, indicating it was most probably the wrong organization of the carboxysomes that eventually led to the inefficient operation of carboxysomal carbonic anhydrase and the subsequent defectiveness of the mutant in utilizing DIC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to define its characteristics of the photosynthetic utilization of CO2 and HCO3- when the ambient inorganic carbon changed, HCG (High-CO2-Growing Cells) of cyanobacterium Anabaena sp. strain PCC7120 were prepared. The growth rate of HCG was higher than that of LCG (low-CO2-growing cells, i.e. air-growing cells). When the HCG cells were transferred from 5% CO2 to air levels of CO2 , a series of changes took place: its carbonic anhydrase activity as well as its photosynthetic affinity to the external inorganic carbon significantly increased; the number of the carboxysomes, which is one of the most important components of CCM in cyanobacteria also increased. These facts indicated that the CCM activity of Anabaena PCC 7120 was induced. When the pH in the medium increased from 6 to 9, the photosynthetic affinity to external inorganic carbon of both HCG and LCG declined, while the apparent photosynthetic affinity to external CO2 increased. In the light of these findings, this inducible CCM in cyanobacteria provided a good model for the study of the photosynthetic Ci utilization in the phototrophic microoganisms.