9 resultados para photoprotection

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用改进的的分离纯化方法从菠菜叶绿体中获得了纯度和活性、Chl a 和β-carotene含量较高的Cyt b6f制剂。利用吸收光谱、CD光谱和共振喇曼光谱对Cyt b6f蛋白复合体中的β-carotene分子的构型及构象进行了研究。结果表明,无论是结合在蛋白复合体上还是处于自由状态,该β-carotene都是一种特殊的9-顺式构型的分子;在蛋白复合体中,该9-顺式β-carotene存在于一种不对称的蛋白环境中,但从喇曼光谱中没有观察到构象扭曲现象。SDS处理前、后的荧光激发光谱和光破坏的研究表明Cyt b6f中的β-carotene不能有效地向Chl a传递光能,但对Chl a具有明显的光保护功能,因而说明β-carotene分子是Cyt b6f的天然结构和功能成分。根据这些实验结果和文献的有关报道,提出了β-carotene在Cyt b6f中可能的光保护机理模型,,即在Cyt b6f中,Chl a不是单线态氧的主要发生源,单线态氧主要由Rieske[Fe-s]中心产生,β-carotene不具有直接淬灭Chl a三线态的功能,其主要功能是作为抗氧化剂抵御Rieske[Fe-s]中心产生的单线态氧对Chl a的攻击,从而保护Cyt b6f中Chl a免受强光照射的破坏。 利用非变性凝胶电泳和硫酸铵沉淀对Chl a在Cyt b6f中的结合和解离现象进行了研究,观察到Chl a的解离与Rieske蛋白的解离及Cyt b6f复合体单体化的关系比较密切,膜脂能够有效地抵制这三个过程的发生,推测膜脂的作用位置位点可能位于Cyt b6f二聚体中两个单体之间的交界处。色素重组实验表明缺失Rieske[Fe-S]蛋白的Cyt b6f单体不能有效的和Chl a重组。 利用从菠菜叶绿体中分离纯化出的缺脂Cyt b6f与从菠菜类囊体分离纯化的膜脂进行体外重组,检测了不同膜脂对Cyt b6f催化电子传递活性的影响。结果表明:被检测的五种膜脂单半乳糖基甘油二酯(MGDG)、双半乳糖基甘油二酯 (DGDG),磷脂酰胆碱(PC),磷脂酰甘油(PG)和硫代异鼠李糖基甘油二酯(SQDG)对Cyt b6f催化电子传递的活性均有明显的促进作用,但促进的程度各不相同。不带电荷的MGDG和DGDG及分子整体呈电中性的PC对促进Cyt b6f催化电子传递的活性非常用效,最适条件下可分别使其活性提高89%、75%和77%;而带负电荷的PG和SQDG的活性促进作用则相对较弱,最适条件下仅可使其活性分别提高43%和26%。由此可见,膜脂对Cyt b6f活性的促进作用可能与这些膜脂分子的带电性质密切相关。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

植物已经演化出多种保护其免受强光抑制和破坏的机制,从而使植物体在自然界能够应付复杂多变的光照环境。虽然人们早就确定Cyt b-559存在于PSII反应中心内,但目前对其性质与功能的认识还不充分。本工作的目的就是研究Cyt b-559天然分子特性,探讨其生理功能和存在的意义。取得了一些有新意的结果: 1、依据PSII反应中心分离纯化的原理,应用更有效的层析介质DEAE-Sephacel,我们设计了快速高效的从菠菜和水稻中分离纯化Cyt b-559的方法和流程,获得了高纯度的样品。它们在非变性胶电泳中具有相同的泳动性。蛋白组分的HPLC结果证明,纯化的Cyt b-559的确由两个亚基组成,α亚基和β亚基的分子量用我们设计的适合于分析小蛋白的Tricine—SDS—PAGE方法准确测定为9.4kDa和4.5kDa。 2、利用HPLC技术分析了纯化的Cyt b-559样品的色素组成,结果表明Cytb-559中含有Chl α而不含类胡萝卜素分子,这一结果通过吸收光谱和共振拉曼光谱的分析得到进一步地证明。通过等电聚焦方法分析了Cyt b-559的等电点,发现其亚基的等电点相差很大,全蛋白的等电点与...更多D1、D2蛋白的等电点也不相同,推测在体内生理pH条件下它们具有相反带电性而在PSII组装中发挥作用。 3、低温荧光光谱的检测结果表明,Cyt b-559的荧光发射峰位在563nm和666nm;首次证明Cyt b-559可以发出荧光和将电子传递给结合在其上的辅助叶绿素,但传递能力比较低故而导致其荧光特性与PSII反应中心的不相同。Cytb-559的紫外荧光光谱表明Trp残基位于其内部的疏水区域,证明Cyt b-559中的芳香族氨基酸可能在其功能的发挥中起一定作用。 4、通过MCD的分析,发现Cyt b-559中血红素的MCD信号在540—580nm和400—440nm波段,而且光谱形状和强度与PSII反应中心的相一致,说明PSII反应中心该范围内的MCD信号中有Cyt b-559的贡献。FTIR光谱的测定结果证明Cyt b-559血红素的配体是组氨酸,其二级结构中α-螺旋占了一半。此外,还比较了Cyt b-559和PSII反应中心的膜脂成分,发现两者有很大的相似性。不同植物来源的Cyt b-559在许多性质上都表现出高度一致,从一个侧面证明Cyt b-559在进化中的保守性。 5、PSll反应中心发生光破坏时,原初电子供体P680己受到严重破坏。我们发现,在光抑制的最初一段时间内,Cyt b-559吸收峰值发生变化:在受体侧光抑制的条件下,其吸收峰值先略有增加而后才下降,而在供体侧光抑制条件下则相反,说明 Cyt b-559对光抑制的发生非常敏感,可能在光抑制早期保护PSll反应中心。 6、纯化的Cyt b-559的组氨酸含量在照光前后没有显著的变化,说明 PSll反应中心内被破坏的组氨酸不属于Cyt b-559。PSll反应中心所含的组氨酸中有些可被DEPC修饰,但我们的实验结果表明DEPC不能修饰Cyt b-559的组氨酸。这可能有利于Cyt b-559保护功能的发挥。 7、我们观察到,在两种光抑制条件下,LP Cyt b-559光还原和 HP Cyt b-559光氧化具有对pH值的依赖性,说明Cyt b-559在光保护中的作用不仅与其高低电势态有关,而且与其质子化程度有联系。CCCP促进HP Cyt -559释放质子,从而维持循环电子传递。DCBQ和 DCMU在很低浓度时都抑制 Cyt b-559光还原,前者不影响Cyt b-559光氧化而后者在CCCP存在时也会抑制Cyt b-559光氧化。 8、Cyt b-559有定位PSll反应中心其它蛋白的锚蛋白的作用。黄化苗转绿实验证明在 HP Cyt b-559的含量增加超过 45%以后放氧活性开始逐渐增加。Cytb-559从低电势态到高电势态的转变是放氧复合物组装到PSll反应中心的关键步骤之一。在植物正常生长时,Cyt b-559与 P680的其它电于供体发生竟争,起到安全阀门的作用。 9、在逆境条件下,Cyt b-559具有保护PSll反应中心免受强光破坏而起到“分于开关”的作用。我们的实验表明,在室温条件下存在通过Cyt b-559的环式电子流,存在从氧化态LP Cyt b-559到还原态HP Cyt b-559的一个循环,其中的氧化还原变化与质子化/去质子化反应相连。通过与其它血红素蛋白的比较,我们推测 Cyt b-559“分子开关”的关键是:光抑制情况下,铁原子与远端His之间的疏水空穴被氧自由基占据后使得铁进入叶琳中央孔中,迫使近端HIS向叶琳平面位移,从而引起 Cyt b-559构象改变,使电势态发生转变。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

细胞色素b6f蛋白复合体(Cyt b6f)是光合链中连接两个光系统(PSII 和PSI)的中间电子载体蛋白复合物,其主要的生理功能是催化电子传递和质子跨膜转移,形成跨膜质子电化学梯度,为ATP的合成提供能量,在光合作用光能转化过程中占有很重要的地位。细菌和莱茵衣藻Cyt b6f的晶体结构已于2003年底获得了近原子水平的解析,但有关该复合物中两种色素(Chl a和β-Car)的生理功能及其机理尚无明确的解释。预计它们将成为今后几年的研究热点,因为揭示Cyt b6f蛋白复合体中Chl a和β-Car分子的生理功能对于进一步阐明光合作用高效转能及其调控的分子机理具十分重要的意义。鉴于目前尚未见到海洋绿藻Cyt b6f的报道,本文以海洋绿藻—假根羽藻(Bryopsis corticulans)类囊体膜上的Cyt b6f蛋白复合体为对象,对其中的类胡萝卜素的分子结构与生理功能进行了比较系统地研究。 首先,我们改进了原用于菠菜类囊体膜Cyt b6f的分离、纯化流程,在原流程的基础上增加了一次2 mol/L NaBr洗膜,彻底地去除了膜表面的杂蛋白;还调整了第二次硫酸铵分级沉淀时的饱和度,并将38-45%饱和度下的沉淀物确定为需要收集的Cyt b6f制剂。采用此改进的流程,我们首次从假根羽藻类囊体膜中分离纯化了高活性、高纯度的Cyt b6f制剂。SDS-PAGE分析的结果显示该制剂的4个多肽亚基 (Cytf 、Cyt b6 、Rieske[Fe-s]及亚基IV)的表观分子量分别为34.8、24.0、18.7和16.7 kD;Cyt b6 / f 比值接近2.0, 其纯度值为9.9 nmol cyt f/mg;其催化电子传递的活性 (C10-PQH2→PC)为73 e/s。HPLC 和共振拉曼光谱分析表明,假根羽藻Cyt b6f中的类胡萝卜素为α-胡萝卜素分子,它是一种在Cyt b6f中尚未报道过的类胡萝卜素。定量分析表明,每个假根羽藻Cyt b6f单体中全反式(all-trans)和9顺式(9-cis)α-胡萝卜素的含量分别为0.2和0.7个分子,另外还含有1.2分子的Chl a。CD光谱分析表明该9-cis-α-胡萝卜素处在一个不对称的蛋白环境中。TLC分析表明该制剂是一种缺脂的Cyt b6f蛋白复合体。 采用稳态荧光激发光谱,时间分辨吸收光谱及Chl a的光破坏实验对假根羽藻Cyt b6f中α-胡萝卜素的功能进行了研究。结果表明,Cyt b6f中α-胡萝卜素可以将它吸收的光能传递给Chl a,其能量传递效率为62.4%,提出α-胡萝卜素分子与Chl a分子之间的单线态能量传递是遵从Föster 机制进行的;α-胡萝卜素分子对Chl a分子有一定的光保护作用,这种保护作用是通过清除单线态氧来实现的。另外还发现Cyt b6f中的Chl a分子可能与其周围的氨基酸残基存在相互作用,认为这是其进行自我光保护的一种方式。 此外,还采用HPLC研究了光和暗交替对假根羽藻Cyt b6f中α-胡萝卜素构型的影响,并对假根羽藻Cyt b6f选择结合α-胡萝卜素的原因进行了初步的分析。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

以‘早久保’(Prunus persica (L.) Batch.)为试材,在果实最后迅速生长期,通过去果处理降低库力,同时设留果对照,并通过环剥和保留相同数量叶片严格控制库源关系,进行了源叶净光合速率(Pn)、叶绿素荧光、叶黄素循环、抗氧化酶及抗氧化同化物日变化的研究。结果表明,和留果对照相比,去果处理显著降低了源叶Pn、气孔导度(gs)和蒸腾速率(E),但显著增加了胞间二氧化碳浓度(Ci)、叶面饱和蒸汽压亏缺(VPDl)和叶片温度(Tl)。光系统II光化学效率(ΦPSII)以及羧化速率(CE)与Pn平行降低。中午去果降低Pn主要归因于非气孔限制。在低库需条件下,开放的PSII反应中心捕获能量的降低以及关闭的PSII反应中心的增加导致了ΦPSII的降低。去果处理叶片中依赖于叶黄素循环的热耗散以及抗氧化系统的上调保护叶片免受光氧化破坏。和留果对照相比,去果处理的叶片有更大的叶黄素循环库,更高的脱环氧化状态以及更高的抗氧化酶活性,包括超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDAR)和脱氢抗坏血酸还原酶(DHAR)的活性以及更高的还原型抗坏血酸(AsA)和还原型谷胱甘肽(GSH)的含量。但与此同时,去果显著增加了过氧化氢(H2O2)以及丙二醛(MDA)的含量,这意味着在去果处理的叶片中可能会发生光氧化破坏。 以一年生‘皇家嘎拉’苹果(Malus domestica Borkh.)组培苗为试材,通过环剥降低库力,进行了源叶Pn、叶绿素荧光、核酮糖-1,5-二磷酸羧化酶/氧化酶(Rubisco)以及光系统II(PSII)复合体关键蛋白PsbA和PsbO含量日变化的研究。和对照相比,环剥显著降低了源叶Pn、gs和E,但是却显著增加了Ci、Tl和淀粉的含量。在低库需下,开放的PSII反应中心捕获能量的降低以及关闭的PSII反应中心的增加导致了ΦPSII的降低。另一方面,环剥降低了光合作用关键酶Rubisco以及PSII复合体PsbA和放氧复合体PsbO的含量。以上结果表明,环剥降低Pn主要归因于非气孔限制。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthesis by phytoplankton cells in aquatic environments contributes to more than 40% of the global primary production (Behrenfeld et al., 2006). Within the euphotic zone (down to 1% of surface photosynthetically active radiation [PAR]), cells are exposed not only to PAR (400-700 nm) but also to UV radiation (UVR; 280-400 nm) that can penetrate to considerable depths (Hargreaves, 2003). In contrast to PAR, which is energizing to photosynthesis, UVR is usually regarded as a stressor (Hader, 2003) and suggested to affect CO2-concentrating mechanisms in phytoplankton (Beardall et al., 2002). Solar UVR is known to reduce photosynthetic rates (Steemann Nielsen, 1964; Helbling et al., 2003), and damage cellular components such as D1 proteins (Sass et al., 1997) and DNA molecules (Buma et al., 2003). It can also decrease the growth (Villafane et al., 2003) and alter the rate of nutrient uptake (Fauchot et al., 2000) and the fatty acid composition (Goes et al., 1994) of phytoplankton. Recently, it has been found that natural levels of UVR can alter the morphology of the cyanobacterium Arthrospira (Spirulina) platensis (Wu et al., 2005b). On the other hand, positive effects of UVR, especially of UV- A (315-400 nm), have also been reported. UV- A enhances carbon fixation of phytoplankton under reduced (Nilawati et al., 1997; Barbieri et al., 2002) or fast-fluctuating (Helbling et al., 2003) solar irradiance and allows photorepair of UV- B-induced DNA damage (Buma et al., 2003). Furthermore, the presence of UV-A resulted in higher biomass production of A. platensis as compared to that under PAR alone (Wu et al., 2005a). Energy of UVR absorbed by the diatom Pseudo-nitzschia multiseries was found to cause fluorescence (Orellana et al., 2004). In addition, fluorescent pigments in corals and their algal symbiont are known to absorb UVR and play positive roles for the symbiotic photosynthesis and photoprotection (Schlichter et al., 1986; Salih et al., 2000). However, despite the positive effects that solar UVR may have on aquatic photosynthetic organisms, there is no direct evidence to what extent and howUVR per se is utilized by phytoplankton. In addition, estimations of aquatic biological production have been carried out in incubations considering only PAR (i. e. using UV-opaque vials made of glass or polycarbonate; Donk et al., 2001) without UVR being considered (Hein and Sand-Jensen, 1997; Schippers and Lurling, 2004). Here, we have found that UVR can act as an additional source of energy for photosynthesis in tropical marine phytoplankton, though it occasionally causes photoinhibition at high PAR levels. While UVR is usually thought of as damaging, our results indicate that UVR can enhance primary production of phytoplankton. Therefore, oceanic carbon fixation estimates may be underestimated by a large percentage if UVR is not taken into account.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在青藏高原东部的亚高山针叶林区,如何尽快恢复这一生态脆弱地区的植被,改变生态环境恶化的趋势,是一个十分重要的课题。光一直被认为是植物种间相互替代,尤其是森林演替过程中植物相互替代或植被恢复中的关键环境要素之一。植物能否适应林冠下或林窗中异质的、或多变的光照条件,对其在林中的生存、分布、更新以及森林动态都是非常重要的。 本文以青藏高原东部亚高山针叶林的主要森林类型——岷江冷杉林群落的几种树苗为研究对象,采用实验生态学、生理及生物化学等方法,通过模拟针叶林不同大小林窗内光照强度的变化,在中国科学院茂县生态站内采用遮荫处理设置6个光照梯度(100、55、40、25、15与7%全光照),来研究具有不同喜光特性的植物对光强的响应与适应机制,其研究结果可为揭示亚高山针叶林的演替规律、以及人工林下幼苗的存活与定居提供科学依据,也能为苗木的生产与管理提供科学指导,尤其是对针阔树种在不同光强下的响应与适应的比较研究,能为如何将阔叶树种整合到人工针叶林中提供新的思路。 光强对植物生长的影响 光强对植物的生长具有重要作用,不同植物在各自适宜的光强梯度下才能生长良好。通过一个野外盆栽实验,来研究不同光强对植物生长的影响(第三章)。主要研究结果如下,低光强下植物株高/茎生物量增加,说明植物会将生物量更多用于高生长,以便有效地拦截光资源;在强光下,植物将生物量更多地向根部分配,使得植物在强光下能够吸收更多的水分,而避免干旱胁迫。 在第一个生长季节,以相对生长速率(RGR)表示,红桦和青榨槭在100%全光照下RGR最大,粗枝云杉在55%最大,岷江冷杉在25-40%下较好;然而,在第二个生长季节,2种阔叶树的相对生长速率(RGR)的适宜光强则变为25-55%,云杉为55-100%,而冷杉为25-100%。可见,从第一年到第二年,2种阔叶树苗更适宜在部分荫蔽的条件下生长;而2种针叶树苗对光的需求则逐渐增加,这可能是增加对根生物量相对投资的结果,因为以这种方式,强光下生长的针叶树幼苗更能保持其内部水分平衡,其生长不会因干旱胁迫而受到严重影响。另外,严重遮荫会引起冷杉幼苗死亡。 植物对光强的生理适应 植物可以通过自身形态和生理特征的调整,来发展不同的光能利用策略从而能够在林中共存。通过一个野外盆栽实验,研究了不同光强下生长的几种树苗的生理特征(第四章)对不同光强的响应与适应。结果显示:强光下,粗枝云杉和红桦的光合能力增加,而岷江冷杉和青榨槭在中度遮荫(25-55%)的条件下光合能力最大。植物叶氮和叶绿素含量增高,而光补偿点和暗呼吸速率降低,这些都是植物对低光环境的适应性反应;而强光下植物叶片和栅栏组织变厚,是对强光的一种保护性反应。 植物对光的可塑性反应 不同植物会表现出对光适应有利的生理和形态可塑性反应。本文对第三章、第四章的实验数据进行可塑性指数分析,来研究植物对光强的表型可塑性反应(第五章)。结果显示,生理特征调整是植物对不同光环境的主要适应途径。红桦和青榨槭的可塑性指数平均值要大于粗枝云杉和岷江冷杉,充分表明这2种阔叶树在生理和形态上较强的可塑性更有利于对光环境的适应,而具有比耐荫树种更强的适应能力。另外,2种针叶树相比,云杉的适应性更强。本研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说。 植物的光抑制与防御 当植物叶片吸收了过多光能,会发生光抑制现象。植物对光抑制的敏感性及防御能力对其生长具有重要意义。本文通过两个野外盆栽实验,研究了生长在强光下(第六章)和变化光强下(第八章)植物的光抑制现象及其防御策略。结果表明,在强光下或从遮荫状态转入强光下,植物都会发生光抑制,其对光抑制的敏感性与植物的耐荫性(或喜光)和演替状态有密切联系。长期生长在强光下的植物受到光抑制是可恢复的,而当处于荫蔽环境的植物突然暴露于强光下时,受到的光抑制不能完全恢复,可能是(部分)光合机构受到破坏的缘故。粗枝云杉和青榨槭防御光抑制伤害的能力较强,热耗散是其防御光抑制的主要途径。长期的强光作用能使岷江冷杉和红桦发生严重光抑制,甚至光伤害,而红桦能够通过“凋落老叶,萌发新叶”的途径来适应新的强光环境。 How to restore the vegetation of subalpine coniferous forest in eastern Qinghai-Tibet Plateau, and change the trend of ecological deterioration is a very important issue. Acclimation of tree seedlings to different and varing light environment affects to a great extent the successful regeneration and establishment of subalpine coniferous forests in southwestern China’s montane forest areas, because the ability to respond to such changing resource are commonly assumed to be critical to plant success, and have a growth advantage than others. In this paper, several species seedlings in Abies faxoniana community were chosed to study the response and adaptation to light intensity and the interspecific differences of adaptability in six shaded sheds (100, 55, 40, 25, 15 and 7% of full sunlight) in the Maoxian Ecological Station of Chinese Academy of Sciences. Our results could provide a strong theoretical evidence for understanding the forest succession laws of subalpine coniferous forests, and the survival and settlement of seedlings under plantations, and provide scientific direction for the production and management of seedlings, especially the comparative studies of the acclimation to light between the conifer and broadleaf trees could provide new ideas for how to integrate the broad-leaved trees into the artificial coniferous forest. Growth under different light intensity Light intensity plays an important role on plant growth. One field experiments was conducted to study the growth of tree seedlings of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii under different light intensities. The results showed that plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources, while biomass greater allocation to the roots, could make plants under high light environment absorb more water, and avoid drought stress. During the first growing season, the relative growth rates (RGRs) of Betula albo-sinensis and Acer davidii had the greatest values under the 100% of full light, for 55% of Picea asperata, and for 25-40% of Abies faxoniana. However, in the second growing season the the relative growth rates of the two broad-leaved trees changed and were appropriate for 25-55% of full light, for 55-100% of spruce, and for 25-100% of fir. Thus, from the first year to the second year, two broad-leaved seedlings maybe more suitable to partly shading environment, and two coniferous seedlings would have an increase in light demand, which may be an increased root biomass investment. Because in this way, seedlings grown under high light could better maintain their internal water balance, and thus its growth would not be seriously affected by drought stress. In addition, serious shading would cause fir seedlings to die. Acclimation of physiology to light Plants could coexist in forest ecosystem by forming different strategies of light use. One field experiments was conducted to study the acclimation of tree seedlings to different light intensity of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii. The results showed that the photosynthetic capacity of Picea asperata and Betula albo-sinensis exhibited a general tendency of increase with more light availability; but for Abies faxoniana and Acer davidii seedlings, their highest values of the same parameters were found under intermediate light regime (i.e. 25-55% of PFD relative to full sunlight). Plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources. Leaf nitrogen and chlorophyll content increased, while dark respiration rate and light compensation points decreased, all of which were adaptive response to the low light environment. On the contrary, plants under high light environment had the thicken leaves and palisade tissue, which was a protective response to high light. Phenotypic plasticity to light Phenotypic plasticity can be exhibited in morphological and physiological processes. Physiological characteristical adjustment is the main for plant adaptation to different light environment.The means of plasticity indexes for Betula albo-sinensis and Acer davidii seelings were greater than Picea asperata and Abies faxoniana, amplied that the two broad-leaved trees were much more adaptable to the environment. In addition, spruce had the higher adaptablity than fir. The findings supported the hypothesis that the ecological characteristics of the species determined the biological status and its biological habitat selection. Photoinhibition and photoprotection to light Compared with conifer, broad-leaved trees could better change leaf morphology and adjust biomass allocation to adapt to changing light environment. However, excess light can photoinhibit photosynthesis and may lead to photooxidative destruction of the photosynthetic appatus. Two field experiments were conducted to study the photoinhibition of photosynthesis. The results showed that when plants grown under high light environment or plants transferred from low to high irradiance, the four tree seedlings would undergo a period of photoinhibition. In four species, photoinhibited leaves could recover to initial photosynthetic rates when they were long-term planted under high light environment. However, when plants were suddenly exposed to high irradiance, this photoinhibition could not be reversible, may be the photosynthesis apparatus were (or partly) photooxidatively destructed.