9 resultados para performance tests

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

To increase effective load, light-weight micro-propulsion system is necessary for micro-satellites. Traditional propulsion systems including large and heavy high-pressure vessels are difficult to be scaled down to fulfill the demand of micro-satellites. In this article, a novel self-pressurizing fuel tank without high-pressure gas vessel is proposed. When some liquid propellant is consumed, pressure is compensated with CO2 released by heating NH4HCO3 powder in the fuel tank. Comparing with other types of self-pressurizing liquid fuel tank, a gas generator with special and simple structure was designed to stop or continue the NH4HCO3 decomposition reaction easily, and consumed a small amount of energy to heat the powder effectively. Performance tests showed that this new prototype is very suitable for micro-thrusters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pt3Sn/C catalyst was prepared by a modified polyol process and treated in air, H-2/Ar, and Ar atmosphere, respectively. XRD analyses indicate that all of these catalysts have face-centered cubic (fcc) crystal structure. Temperature-programmed reduction (TPR) experiments show that more Sn exists in zero-valence in the Ar-treated PtSn catalyst than in the others. Cyclic voltammetry (CV), chronoamperometry (CA) experiments, and the performance tests of direct ethanol fuel cell (DEFC) indicate that the catalytic activity of PtSn/C for ethanol oxidation was affected significantly by the chemical state of Sn in catalyst particles. The as-prepared PtSn/C gives the higher power density, while Ar-treated PtSn/C shows the lower cell performance. It seems that the multivalence Sn rather than the zero-valence Sn in the PtSn catalyst is the favorable form for ethanol oxidation. Energy dispersion X-ray analysis (EDX) of the PtSn/C-as prepared and PtSn/C (after stability test) shows the active species (platinum, tin, and oxygen) composition changed to a different extent. Further attempt to improve the catalyst stability is needed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An association of the dopamine receptor D4 (DRD4) gene located on chromosome 11p15.5 and attention deficit/hyperactivity disorder (ADHD) has been demonstrated and replicated by multiple investigators. A specific allele [the 7-repeat of a 48-bp variable number of tandem repeats (VNTR) in exon 3] has been proposed as an etiological factor in attentional deficits manifested in some children diagnosed with this disorder. In the current study, we evaluated ADHD subgroups defined by the presence or absence of the 7-repeat allele of the DRD4 gene, using neuropsychological tests with reaction time measures designed to probe attentional networks with neuroanatomical foci in D4-rich brain regions. Despite the same severity of symptoms on parent and teacher ratings for the ADHD subgroups, the average reaction times of the 7-present subgroup showed normal speed and variability of response whereas the average reaction times of the 7-absent subgroup showed the expected abnormalities (slow and variable responses). This was opposite the primary prediction of the study. The 7-present subgroup seemed to be free of some of the neuropsychological abnormalities thought to characterize ADHD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Characteristics of supersonic combustion by injecting kerosene vapor into a Mach 2.5 crossflow at various preheat temperatures and pressures were investigated experimentally. A two-stage heating system has been designed and tested, which can prepare heated kerosene of 0.8 kg up to 820 K at pressure of 5.5 Mpa with minimum/negligible fuel coking. In order to simulate the thermophysical properties of kerosene over a wide range of thermodynamic conditions, a three-component surrogate that matches the compound class of the parent fuel was employed. The flow rate of kerosene vapor was calibrated using a sonic nozzle. Computed flow rates using the surrogate fuel are in agreement with the experimental data. Kerosene jets at various preheat temperatures injecting into both quiescent environment and Mach 2.5 crossflow were visualized. It was found that at injection pressure of 4 Mpa and preheat temperature of 550 K the kerosene jet was completely in vapor phase, while keeping almost the same penetration depth as compared to the liquid kerosene injection. Supersonic combustion tests were also carried out to compare the combustor performance for the cases of vaporized kerosene injection, liquid kerosene injection, and effervescent atomization with hydrogen barbotage, under the similar stagnation conditions. Experimental results demonstrated that the use of vaporized kerosene injection leads to better combustor performance. Further parametric study on vaporized kerosene injection in a supersonic model combustor is needed to assess the combustion efficiency as well as to identify the controlling mechanism for the overall combustion enhancement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we conduct a theoretical analysis of the design, fabrication, and performance measurement of high-power and high-brightness strained quantum-well lasers emitting at 0.98 mum, The material system of interest consists of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. Some key parameters of the laser structure are theoretically analyzed, and their effects on the laser performance are discussed. The laser material is grown by metal-organic chemical vapor deposition and demonstrates high quality with low-threshold current density, high internal quantum efficiency, and extremely low internal loss. High-performance broad-area multimode and ridge-waveguide single-mode laser devices are fabricated. For 100-mum-wide stripe lasers having a cavity length of 800 mum, a high slope efficiency of 1.08 W-A, a low vertical beam divergence of 34 degrees, a high output power of over 4.45 W, and a very high characteristic temperature coefficient of 250 K were achieved. Lifetime tests performed at 1.2-1.3 W (12-13 mW/mum) demonstrates reliable performance. For 4-mum-wide ridge waveguide single-mode laser devices, a maximum output power of 394 mW and fundamental mode power up to 200 mW with slope efficiency of 0.91 mW/mum are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90degreesC shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, the cross-over rates of methanol and ethanol, respectively, through Nafion(R)-115 membranes at different temperatures and different concentrations have been measured and compared. The changes of Nafion(R)-115 membrane porosity in the presence of methanol or ethanol aqueous solutions were also determined by weighing vacuum-dried and alcohol solution-equilibrated membranes. The techniques of anode polarization and adsorption stripping voltarnmetry were applied to compare the electrochemical activity and adsorption ability, respectively. To investigate the consequences of methanol and ethanol permeation from the anode to the cathode on the performance of direct alcohol fuel cells (DAFCs), single DAFC tests, with methanol or ethanol as the fuel, have been carried out and the corresponding anode and cathode polarizations versus dynamic hydrogen electrode (DHE) were also performed. The effect of alcohol concentration on the performance of PtRu/C anode-based DAFCs was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cost-effective organic sensitizers will play a pivotal role in the future large-scale production and application of dye-sensitized solar cells. Here we report two new organic D-pi-A dyes featuring electron-rich 3,4-ethylenedioxythiophene- and 2,2'-bis(3,4-ethylenedioxythiophene)-conjugated linkers, showing a remarkable red-shifting of photocurrent action spectra compared with their thiophene and bithiophene counterparts. On the basis of the 3-f{5'-[N,N-bis(9,9-dimethylfluorene-2-yl)phenyl]-2,2'-bis(3,4-ethylenedioxythiophene)-5-yl}2-cyanoacrylic acid dye, we have set a new efficiency record of 7.6% for solvent-free dye-sensitized solar cells based on metal-free organic sensitizers. Importantly, the cell exhibits an excellent stability, keeping over 92% of its initial efficiency after 1000 h accelerated tests under full sunlight soaking at 60 degrees C. This achievement will considerably encourage further design and exploration of metal-free organic dyes for higher performance dye-sensitized solar cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work, Nafion (R) membrane porosity changes were determined in aqueous ethanol solutions with different concentrations by weighing vacuum-dried and ethanol aqueous solution equilibrated membranes at room temperature. The ethanol crossover rate through Nafion (R)-115 membrane at different temperatures and different concentrations had been investigated in a fuel cell test apparatus by using membrane gets higher as ethanol solution gas chromatography analysis. The experimental results show that the swelling degree of Nafion (R) concentration increases. The ethanol crossover rate increases with ethanol concentration and temperature increment. The single direct ethanol fuel cell (DEFC) tests were carried out to investigate the effect of ethanol concentration on ethanol crossover and consequently, on the open circuit voltage and the cell performance of DEFC. It can be found that ethanol crossover presented a negative effect on the OCV and the cell performance of DEFC. It can also be found that an improved DEFC performance was obtained as temperature increased although the ethanol crossover rate increased with temperature increment. (c) 2005 Elsevier B.V. All rights reserved.