45 resultados para pechini
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR).
Resumo:
This feature article highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process, which uses the common metal salts (nitrates, acetates, chlorides, etc.) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as a cross-linking agent to form a polymeric resin on molecular level, reduces segregation of particular metal ions and ensures compositional homogeneity. This process can overcome most of the difficulties and disadvantages that frequently occur in the alkoxides based sol-gel process.
Resumo:
Nanocrystalline ZrO2 fine powders were prepared via the Pechini-type sol-gel process followed by annealing from 500 to 1000 degrees C. The obtained ZrO2 samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), and photoluminescence spectra (PL), respectively. The phase transition process from tetragonal (T) to monoclinic (M) was observed for the nanocrystalline ZrO2 powders in the annealing process, accompanied by the change of their photoluminescence properties. The 500 degrees C annealed ZrO2, powder with tetragonal structure shows an intense whitish blue emission (lambda(max) = 425 nm) with a wide range of excitation (230-400 nm). This emission decreased in intensity after being annealed at 600 degrees C (T + M-ZrO2) and disappeared at 700 (T + M-ZrO2), 800 (T + M-ZrO2), and 900 degrees C (M-ZrO2). After further annealing at 1000 degrees C (M-ZrO2), a strong blue-green emission appeared again (lambda(max) = 470 nm).
Resumo:
SrLa1-xRExGa3O7 (RE = EU3+, Tb3+) phosphor films were deposited on quartz glass substrates by a simple Pechim sol-gel method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy, field-emission scanning electron microscopy, photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 700 degrees C and crystallized fully at 900 degrees C. The results of FNR spectra were in agreement with those of XRD. Uniform and crack-free films annealed at 900 degrees C were obtained with average grain size of 80 nm, root mean square roughness of 46 nm and thickness of 130 nm The RE ions showed their characteristic emission in crystalline SrLa1-xRExGa3O7 films, i.e., Eu3+ D-0-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+5D4 -(7) F-J (J = 6, 5, 4, 3) emissions, respectively. The optimum concentrations (x) of Eu3+ and Tb3+ were determined to be 50, and 80 mol% in SrLa(1-x)RE(x)GGa(3)O(7) films, respectively.
Resumo:
Rare earth ions (Eu3+ and Dy3+)-doped Gd-2(WO4)(3) phosphor films were prepared by a Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting powders and films. The results of XRD indicate that the films begin to crystallize at 600degreesC and the crystallinity increases with the elevation of annealing temperatures. The film is uniform and crack-free, WO(4)(2-)mainly consists of closely packed fine particles with an average grain size of 80 nm. Owing to an energy transfer from 4 groups, the rare earth ions show their characteristic emissions in crystalline Gd-2(WO4)(3) phosphor films, i.e., D-5(J) -F-7(J), (J = 0, 1, 2, 3; J' = 0 1, 2, 3, 4, not in all cases) transitions for Eu3+ and F-4(9/2)-H-6(J) (J = 13/2, 15/2) transitions for D Y3+, with the hypersensitive transitions D-5(0)-F-7(2) (Eu3+) and F-4(9/2) - H-6(13/2) (Dy3+) being the most prominent groups, respectively.
Resumo:
CaWO4 phosphor films doped with rare-earth ions (Eu3+, Dy-,(3+) Sm3+, Er3+) were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric and differential thermal analysis, atomic force microscopy, and photoluminescence spectra, as well as lifetimes, were used to characterize the resulting powders and films. The results of the XRD analysis indicated that the films began to crystallize at 400degreesC and that the crystallinity increased with elevation of the annealing temperature. The doped rare-earth ions showed their characteristic emissions in crystalline CaWO4 phosphor films due to energy transfer from WO42- groups to them. Both the lifetimes and PL intensities of the doped rare-earth ions increased with increasing annealing temperature, from 500 to 900degreesC, and the optimum concentrations for Eu3+, Dy3+, Sm3+, Er3+ were determined as 30, 1.5, 1.5, 0.5 at.% of Ca2+ in CaWO4 films annealed at 900degreesC, respectively.
Resumo:
Thin film phosphors with compositions of RP1-xVxO4: A (R = Y, Gd, La; A = Sm3+, Et3+; x = 0, 0.5, 1) have been prepared by a Pechini sol-gel process. X-Ray diffraction, atomic force microscopy (AFM), photoluminescence excitation and emission spectra were utilized to characterize the thin film phosphors. The results of XRD showed that a solid solution formed in YVxP1-xO4: A film series from x = 0 to x = 1 with zircon structure, which also held for GdVO4: A film. However, LaVO4: A film crystallized with a different structure, monazite. AFM study revealed that the phosphor films consisted of homogeneous particles ranging from 90 to 400 nm depending on the compositions. Upon short ultraviolet excitation, the films exhibit the characteristic Sm(3+ 4)G(5/2)-H-6(J) (J=5/2, 7/2, 9/2) emission in the red region and Er3+ H-2(11/2), S-4(3/2)-I-4(15/2) emission in the green region, respectively With the increase of x values in YVxP1-xO4: SM3+ (Er3+) films, the emission intensity Of SM3+ (Er3+) increases due to the increase of energy transfer probability from VO43- to Sm3+ (Er3+). Due to the structural effects, the Sm3+ (Er3+) shows similar spectral properties in YVO4 and GdVO4 films, which are much different from those in LaVO4 film.
Resumo:
Nanocrystalline Gd2O3:A (A = Eu3+, Dy3+, Sm3+, Er3+) phosphor films and their patterning were fabricated by a Pechini sol-gel process combined with a soft lithography. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and optical microscopy, UV/vis transmission and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 500 degreesC and that the crystallinity increased with the elevation of annealing temperatures. Uniform and crack free non-patterned phosphor films were obtained by optimizing the composition of the coating sol, which mainly consisted of grains with an average size of 70 nm and a thickness of 550 nm. Using micro-molding in capillaries technique, we obtained homogeneous and defects-free patterned gel and crystalline phosphor films with different stripe widths (5, 10, 20 and 50 mum). Significant shrinkage (50%) was observed in the patterned films during the heat treatment process. The doped rare earth ions (A) showed their characteristic emission in crystalline Gd2O3 phosphor films due to an efficient energy transfer from Gd2O3 host to them. Both the lifetimes and PL intensity of the rare earth ions increased with increasing the annealing temperature from 500 to 900 degreesC, and the optimum concentrations for Eu3+, Dy3+, sm(3+), Er3+ were determined to be 5, 0.25, 1 and 1.5 mol% of Gd3+ in Gd2O3 films, respectively.
Resumo:
利用溶胶-凝胶法合成了一系列稀土离子掺杂的发光薄膜,包括三元氧磷灰石稀土硅酸盐Ca2RS(SiO4)6O2(R=YGd)体系,YVO4体系,LaPO4体系以及钒磷酸盐形成的固熔体体系1并研究了稀土离子Eu3+,Tb3+,Dy3+,Sm3+,Er3+和类汞离子Pb2+在这些薄膜中的发光性质和能量传递性质。同时利用软石印法结合毛细管微模板技术实现了发光薄膜的图案化。SEM以及AFM结果表明,利用溶胶一凝胶法制备的发光薄膜表面致密均匀,无开裂。通过增加镀膜溶液的粘度、镀膜的次数可以有效的控制薄膜的厚度,使其达到理想的范围。由此可见溶胶一凝胶法是一种比较理想的制备发光薄膜的方法。在三元氧磷灰石稀土硅酸盐Ca2R8(SiO4)6O2(R=YGd)体系中,稀土离子Eu3+,Tb3+在Ca2Y8(SiO4)6O2基质中占据低刘·称性格位6h(Cs)和4f(C3),并以其特征的红光发射(5Do-7F2)和绿光发射(5D4-7F5)为主。Eu3+,Tb3+发光的最佳浓度分别为Y3+的10mol%和6mol%,Ca2Y8(51O4)6O2:Eu3+薄膜样品的发光强度和寿命随着烧结温度的升高而增加,Ca2Y8(SiO4)6O2:Tb3+薄膜样品的发光强度和寿命在800℃时最大,随后又随烧结温度的升高有所下降,Pb2+可以敏化Ca2Gd8(SiO4 )6O2中Gd3+的基质晶格,通过Pb2+→Gd3十→(Gd3+)n→A3+形式传递和转移能量。在YVO4体系中,利用Pechini溶胶一凝胶法以无机盐为主要原料,柠檬酸为络合剂,利用聚乙二醇调节镀膜溶液的粘度,制备了YvO4:A(A=Eu3+ Dy3+,Sm3+,Er3+)纳米发光薄膜。结合软石印法,通过简单工艺实现了发光薄膜图案化烧结过程中图案化薄膜有一定程度的收缩,存在一定的缺陷。得到的条纹在紫外灯下发出明亮的红光。掺杂的稀土离子在YVO4薄膜中显示它们特征发射,同时VO43-和稀土离子之间存在能量传递。Dy3+,Sm3+,Er3十发光的最佳浓度皆为Y3+的2mol%,这三者的发光淬灭是由交叉驰豫引起的。在LaPO4发光薄膜中,Etl3+以591nm的5Do-7Fl跃迁发射为主,呈现红橙光;Tb3+以543nm的5D4-7F5发射为主,属于绿光发射。Ce3+则由其特有的5d-4f双峰发射组成。Tb3+和Eu3+掺杂的样品发光强度和荧光寿命随烧结温度的升局而增加。Tb3+和Eu3+的寿命曲线符合指数衰减,但Tb3十在LaPO4:Ce,Tb薄膜中,所得的寿命曲线不符合单指数衰减。Ce3+和Tb3+之间存在吸收能量传递。通过计算得到能量传递效率可以达到95%以上。XRD结果表明,从x=0到x=1 YVxP1-xO4:Eu3+薄膜形成了一系列具有错石结构的固熔体。在YVxP1-xO4:Eu3+(0≤x≤1)系列薄膜中,随着x值的增加,Eu3+的发光强度和红橙比逐渐增大。除x=0,其它的Eu3+的红橙比都大于1,说明在发射光谱中,以Eu3+禁戒5Do一7F2电偶极跃迁为主,Etls十在基质中处于低对称性格位。当x=0时,即Y0.98Eu0.l2PO4薄膜中,Eu3+,仍处于D2d低对称性格位,但5D0一7FI橙光发射却比SD0一7F2红光发射强。x对Y0.98Eu0.02VxP1-xO4(0≤x≤l)薄膜寿命曲线有很大的影响,当0≤x≤0.5时,Eu3+5 D0-7F2发射呈单指数衰减;当x≥0.6时,Eu3+5D0-7F2发射的衰减曲线比较复杂,不能用单指数拟合。YVxP1-xO4:A3+(0≤x≤1,A=Er,Sm)薄膜中,由于存在VO43-A3+,以及VO43-(VO43-)n-A3+(n≥1)形式的能量传递,同时由于浓度淬灭,VO43-的蓝光发射在0.1≤x≤1范围内,随x的增加而减弱,当x=1时,VO43-的蓝光发射被完全淬灭,而A3+发光强度随x的增加而增加。在RVO4:A3+(R=Y,La,Gd,A=Eu,Sm,Er)纳米发光薄膜中,R对稀土离子发光性质的影响主要是由于基质晶体结构的不同。A3+在YVO4和GdVO4中属于D2d对称性,在YVO4和GdVO4薄膜中A3+的光谱性质基本相同,而LaVO4属于单斜晶系,具有独居石结构。A3+在LaVO4中属于C1对称性。C1对称性比D2d对称性低,A3+的发光光谱中谱线的位置以及谱线的劈裂数目都略有不同。由于Gd3+和发光离子之间的能量传递,A3+在GdVO4基质中的发光最强。
Resumo:
Spherical MCM-41 particles with a diameter of about 150 nm have been successfully coated with CaWO4:Ln (Ln = Eu3+, Dy3+, Sm3+, Er3+) phosphor layers through a simple Pechini sol-gel process. The obtained CaWO4:Ln@MCM-41 composites, which kept the mesoporous structure of MCM-41 and the luminescent properties of phosphors, were investigated as a drug delivery system using aspirin (ASPL) as a model drug.
Resumo:
Nanocrystalline Tm3+-doped La2O3 phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction, field-emission scanning electron microscopy, photoluminescence, and cathodoluminescence spectra were utilized to characterize the synthesized phosphors. Under the excitation of UV light (234 nm) and low-voltage electron beams (1-3 kV), the Tm3+-doped La2O3 phosphors show the characteristic emissions of Tm3+(D-1(2), (1)G(4)-F-3(4), H-3(6) transitions).
Resumo:
Ilmenite-type (Zn1-xCdx)TiO3 (0 <= x <= 0.15 and 0.8 <= x <= 1.0) was synthesized by a modified sol-gel route including the Pechini process via two-step heat treatments. The thermal stability of (Zn1-xCdx)TiO3 depended on the amount of cadmium content. The as-synthesized (Zn1-xCdx)TiO3 (0 <= x <= 0.15 and 0.8 <= x <= 1.0) showed higher thermal stability than that of ZnTiO3. The variation of the dielectric constant of all synthesized (Zn1-xCdx)TiO3 samples for all measurement frequencies showed a similar tendency.
Resumo:
Ordered mesoporous silica (MCM-41) particles with different morphologies were synthesized through a simple hydrothermal process. Then these silica particles were functionalized with luminescent YVO4:EU3+ layers via the Pechini sol-gel process. The obtained YVO4:Eu3+ and MCM-41 composites, which maintained the mesoporous structure of MCM-41 and the red luminescence property of YVO4:Eu3+ were investigated as drug delivery systems using ibuprofen (IBU) as model drug. The physicochemical properties of the samples were characterized by X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), N-2 adsorption, and photoluminescence (PL) spectra, respectively.
Resumo:
LaGaO3:Sm3+, LaGaO3:Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors were prepared through a Pechini-type sol-gel process. X-Ray diffraction, field emission scanning electron microscopy, photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the synthesized phosphors. Under excitation with ultraviolet light (250-254 nm), the LaGaO3: Sm3+, LaGaO3: Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors mainly show the characteristic broadband emission (from 300 to 600 nm with a maximum around 430 nm) of the LaGaO3 host lattice, accompanied by the weak emission of Sm3+ ((4)G(5/2) -> H-6(5/2), H-6(7/2), H-6(9/2) transitions) and/or Tb3+ (D-5(3,4) -> F-7(6,5,4,3) transitions). However, under excitation by low-voltage electron beams (1-3 kV), the LaGaO3: Sm3+, LaGaO3: Tb3+ and LaGaO3: Sm3+, Tb3+ phosphors exhibit exclusively the characteristic emissions of Sm3+ and/or Tb3+ with yellow (Sm3+), blue (Tb3+, with low concentrations) and white (Sm3+ + Tb3+) colors, respectively.
Resumo:
Lu3Ga5O12:Eu3+, Lu3Ga5O12:Tb3+, and Lu3Ga5O12:Pr3+ phosphors were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), photoluminescence, and cathodoluminescence spectra were utilized to characterize the synthesized phosphors. The XRD results reveal that the sample begins to crystallize at 800 degrees C and fully crystallined pure Lu3Ga5O12 phase can be obtained at 1000 degrees C. The FESEM image indicates that the phosphor sample is composed of aggregated rice grainlike particles with sizes around 80-120 nm.