45 resultados para parasite antibody
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Diagnosis of myxosporean Myxobolus rotundus infection was conducted by examining skin mucus from the infected crucian carp Carassius auratus auratus with a monoclonal antibody, MAb 2D12, raised previously against the parasite. A positive reaction was observed in skin mucus collected from infected fish, and spores and pre-spore stages of the parasite were identified by the MAb 2D12. It was also demonstrated that M. rotundus infection can be successfully detected by a simple method, enzyme-linked immunosorbent assay (ELISA), and that skin mucus collected from infected fish skin had a significantly higher optical density (OD) value than that from uninfected fish.
Resumo:
A parallel plate flow chamber was used to study the interaction force between human IgG (immobilized on a chip surface as ligand) and goat anti-human IgG (immobilized on microspheres surface as receptor). First, it was demonstrated that the binding force between the microspheres and the chip surface came from the bio-specific interaction between the antigen and the antibody. Secondly, it was obtained that the critical shear rate to detach microspheres from the chip surface increases with the ligand surface concentration. Finally, two models to estimate the antigen-antibody bond strength considering bonds' positions were proposed and analyzed.
Resumo:
It is to investigate molecule interactions between antigen and antibody with ellipsometric imaging technique and demonstrate some features and possibilities offered by applications of the technique. Molecule interaction is an important interest for molecule biologist and immunologist. They have used some established methods such as immufluorcence, radioimmunoassay and surface plasma resonance, etc, to study the molecule interaction. At the same time, experimentalists hope to use some updated technique with more direct visual results. Ellipsometric imaging is non-destructive and exhibits a high sensitivity to phase transitions with thin layers. It is capable of imaging local variations in the optical properties such as thickness due to the presence of different surface concentration of molecule or different deposited molecules. If a molecular mono-layer (such as antigen) with bio-activity were deposited on a surface to form a sensing surface and then incubated in a solution with other molecules (such as antibody), a variation of the layer thickness when the molecules on the sensing surface reacted with the others in the solution could be observed with ellipsometric imaging. Every point on the surface was measured at the same time with a high sensitivity to distinguish the variation between mono-layer and molecular complexes. Ellipsometric imaging is based on conventional ellipsometry with charge coupled device (CCD) as detector and images are caught with computer with image processing technique. It has advantages of high sensitivity to thickness variation (resolution in the order of angstrom), big field of view (in square centimeter), high sampling speed (a picture taken within one second), and high lateral resolution (in the order of micrometer). Here it has just shown one application in study of antigen-antibody interaction, and it is possible to observe molecule interaction process with an in-situ technique.
Resumo:
One of existing strategies to engineer active antibody is to link VH and VL domains via a linker peptide. How the composition, length, and conformation of the linker affect antibody activity, however, remains poorly understood. In this study, a dual approach that coordinates molecule modeling, biological measurements, and affinity evaluation was developed to quantify the binding activity of a novel stable miniaturized anti-CD20 antibody or singlechain fragment variable (scFv) with a linker peptide. Upon computer-guided homology modeling, distance geometry analysis, and molecular superimposition and optimization, three new linker peptides PT1, PT2, and PT3 with respective 7, 10, and 15 residues were proposed and three engineered antibodies were then constructed by linking the cloned VH and VL domains and fusing to a derivative of human IgG1. The binding stability and activity of scFv-Fc chimera to CD20 antigen was quantified using a micropipette adhesion frequency assay and a Scatchard analysis. Our data indicated that the binding affinity was similar for the chimera with PT2 or PT3 and ~24-fold higher than that for the chimera with PT1, supporting theoretical predictions in molecular modeling. These results further the understanding in the impact of linker peptide on antibody structure and activity.
Resumo:
Background. The present study was undertaken to determine the role of preformed and induced anti-non-Gal antibodies in the rejection of hDAF pig-to-baboon kidney xenotransplants after anti-Gal antibody neutralization therapy. Methods. Seven baboons receiv
Resumo:
BALB/c mice were immunized intragastrically with human sperm. Cells from the Peyer's patches and spleens of the immunized mice were for the preparation of hybridomas secreting antisperm monoclonal IgA (mcIgA). The specific ratio of IgA-secreting cells in Peyer's patches was much higher than that in spleen. The binding site on human sperm of 9 of 19 mcIgA was in the post-acrosomal region using an immunofluorescent assay. Two of eight selected mcIgA caused strong human sperm agglutination and three of them produced significant inhibition of mouse in vitro fertilization. No mcIgA tested caused obvious human sperm immobilization or inhibited mouse in vivo fertilization. In vitro assembly of selected mcIgA in ascites with mouse secretory component (SC) caused no significant changes in effects on sperm function and in vitro fertilization. By use of Western blotting, dimer or higher polymers were demonstrated in all selected mcIgAs and corresponding protein antigens in 6 of 8 selected mcIgAs. These results suggest that human sperm function may be inhibited and fertilization rate reduced by specific secretory IgA to human sperm and that secretory immunity to protein antigens of human sperm could be induced by intragastrointestinal immunization.
Resumo:
To understand better the molecular mechanisms of differential migration of antibody-secreting cells (ASCs) into mouse genital tracts, and regulation by sex hormones, surface markers, hormone receptors and adhesion molecules in mouse SG2 and PA4 hybridoma cells, respectively, secreting IgG2b and polymeric IgA antibody were detected by flow cytometry or RT-PCR. Semiquantitative RT-PCR was also used for measuring mRNA expression of adhesion molecules and chemokines (VCAM-1, ICAM-1, P-selectin, JAM-1 and CXCL12) in genital tracts of various adult mouse groups. The mRNAs of androgen receptor, estrogen receptor beta and CXCR4 were expressed in the ASCs. Sex hormones had no effect on expression of these molecules in ASCs. Except for VCAM-1, mRNA of all examined genes was expressed in normal mouse genital tracts. The mean of relative amounts of ICAM-1 and CXCL12 mRNA in all examined organs of females were higher (2.1- and 1.9-fold) than those in males. After orchiectomy or ovariectomy, the expression of ICAM-1, CXCL12 and P-selectin mRNA in the examined organs increased, except JAM-1 in male and CXCL12 in female. Sex hormone treatment recovered the changes to normal levels of mRNA expression in many examined genital tissues. In combination with our previous work, preferential migration of ASCs into female genital tract and regulation of migration by sex hormones are associated with expression patterns of adhesion molecules and chemokines in genital tract rather than in ASCs. (C) 2006 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The kinetics of mucosal and serum antibody response is well as antibody secreting cells (ASCs) production were studied in large yellow croaker following vaccination with inactivated Vibrio harveyi by different routes: oral administration. intraperitoneal (IP) injection and immersion. Indirect ELISA was used to measure the antibody level in serum and cutaneous mucus, and ELISPOT was used to monitor the ASCs derived from gill, blood and head kidney. The data demonstrated that IP injection resulted in the highest antibody levels in the systemic circulation, whereas immersion induced significant antibody levels in mucous. As for the ASCs response, IP injection induced high numbers of ASCs in the head kidney and blood; oral intubation only induced a slight ASCs response in the head kidney: immersion induced a much stronger ASCs response in the gill. These results indicate that mucosal antibodies following immersion immunization are independent of a systemic response and more sensitive, since it could be triggered earlier than serum antibodies. The mucosal antibodies following IP injection immunization may depend oil a systemic immune response. The protective effects of the three vaccination methods were compared by challenging with live V. harveyi. Survival of the three groups of vaccinated fish varied front 40 to 60%. while 100% mortality was found in control fish. Compared with IP and oral vaccination, immersion stimulated higher specific antibody titers in the mucosal system and achieved similar protection, so it is in effective and efficient method for immunizing a large number of fish against V harveyi (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Habitat fragmentation may have some significant effects on population genetic structure because geographic distance and physical barriers may impede gene flow between populations. In this study, we investigated whether recent habitat fragmentation affected genetic structure and diversity of populations of the nematode Procamallanus fulvidraconis in the yellowhead catfish, Pelteobagrus fin't4draco. The nematode was collected from 12 localities in 7 floodplain lakes of the Yangtze River. Using I I intersirnple sequence repeat markers, analysis of molecular variance showed that genetic diversity occurred mainly within populations (70.26%). Expected heterozygosity (He) of P. fulvidraconis was barely different between connected (0.2105) and unconnected lakes (0.2083). Population subdivision (Fst) between connected lakes (0.2177) was higher than in unconnected lakes (0. 1676). However, the connected and unconnected lakes did not Cluster into 2 clades. A Mantel test revealed significant positive correlation between genetic and geographic distances (R = 0.5335, P < 0.01). These results suggest that habitat fragmentation did not cause genetic differentiation among populations or a reduction of diversity in isolated populations of P. fulvidraconis. At least 2 factors may increase the dispersal range of the nematode, i.e., flash flooding in summer and other species of fish that may serve as the definitive hosts. Moreover, lake fragmentation is probably a recent process; population size of the nematode in these lakes is large enough to maintain Population structure.
Resumo:
White spot syndrome virus (WSSV) is one of the most significant viral pathogens causing high mortality and economic damage in shrimp aquaculture. Although intensive efforts were undertaken to detect and characterize WSSV infection in shrimp during the last decade, we still lack methods either to prevent or cure white spot disease. Most of the studies on neutralizing antibodies from sera have been performed using in vivo assays. For the first time, we report use of an in vitro screening method to obtain a neutralizing scFv antibody against WSSV from a previously constructed anti-WSSV single chain fragment variable region (scFv) antibody phage display library. From clones that were positive for WSSV by ELISA, 1 neutralizing scFv antibody was identified using an in vitro screening method based on shrimp primary lymphoid cell cultures. The availability of a neutralizing antibody against the virus should accelerate identification of infection-related genes and the host cell receptor, and may also enable new approaches to the prevention and cure of white spot disease.
Resumo:
In a previous study, a scFv phage display library against white spot syndrome virus (WSSV) was constructed and yielded a clone designated A I with conformational specificity against native but not denatured viral antigen. Although the clone A1 has been used successfully as a diagnostic antibody, its precise target antigen has not been elucidated. A different strategy was adopted involving the construction of a second T7 phage display library utilizing mRNA isolated from shrimp infected with WSSV. Following RT-PCR and T7 phage library construction, phages displaying the candidate epitope were selected with A I scFv. Since successive enrichment steps were not associated with an increased titer of the phages, enrichment after successive tests was confirmed by PCR resulting in the prefer-red selection of a specific DNA sequence encoding a novel nucleocapsid protein WSSV388. Immune electron microscopy revealed that WSSV388 is located on the nucleocapsid. This result demonstrated that unknown antigen could be identified by phage display using the epitope conformation dependent scFv. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The first description of the male and a redescription of the female of the nematode Philometra clavaeceps Dogiel and Akhmerov, 1959, a parasite of east Asian cyprinids, are presented on the basis of specimens collected from Culter erythropterus Basilewsky and Culler dabryi Bleeker from Liangzi Lake (the Yangtze River basin), Hubei Province, central China. Gravid females from the fish abdominal cavity, penetrating often into ovaries, occurred in May-June, whereas conspecific males and young mature females on the swimbladder were recorded in January. Philometra clavaeceps seems to have a pronounced annual maturation cycle in the locality. The finding of P. clavaeceps in C. dabryi represents a new host record.
Resumo:
To study the immunologic function of bursin, we analyzed the effects of anti-bursin monoclonal antibody (mAb) on the immunosuppression in ducks (Cherry Valley duck) by injecting various doses of the anti-bursin mAb into 13-d duck embryos. After hatch, cell-mediated immune activity and humoral responses were studied using lymphocyte proliferation test, tube agglutination test, and indirect enzyme-linked immuno-sorbent assay to detect anti-Escherichia coli antibodies and antibodies to Riemerella anatipester, respectively. Simultaneously, relative weights (BW-adjusted) of bursa of Fabricius (BF), spleen, and thymus were determined. Additionally, the morphology of BF, spleen, and thymus was examined at various ages using conventional histology. Follicle morphology of BF was analyzed by image analysis. The results indicated that anti-bursin mAb markedly decreased duck lymphocyte proliferation, the antibody-producing ability to bacteria, as well as the relative BF weight. Moreover, the anti-bursin mAb hindered the development of BF follicles.