6 resultados para pacs: neural computing technologies
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The Double Synapse Weighted Neuron (DSWN) is a kind of general-purpose neuron model, which with the ability of configuring Hyper-sausage neuron (HSN). After introducing the design method of hardware DSWN synapse, this paper proposed a DSWN-based specific purpose neural computing device-CASSANN-IIspr. As its application, a rigid body recognition system was developed on CASSANN-IIspr, which achieved better performance than RIBF-SVMs system.
Resumo:
This paper describes a special-purpose neural computing system for face identification. The system architecture and hardware implementation are introduced in detail. An algorithm based on biomimetic pattern recognition has been embedded. For the total 1200 tests for face identification, the false rejection rate is 3.7% and the false acceptance rate is 0.7%.
Resumo:
In this paper, a cellular neural network with depressing synapses for contrast-invariant pattern classification and synchrony detection is presented, starting from the impulse model of the single-electron tunneling junction. The results of the impulse model and the network are simulated using simulation program with integrated circuit emphasis (SPICE). It is demonstrated that depressing synapses should be an important candidate of robust systems since they exhibit a rapid depression of excitatory postsynaptic potentials for successive presynaptic spikes.
Resumo:
Numerical modeling of groundwater is very important for understanding groundwater flow and solving hydrogeological problem. Today, groundwater studies require massive model cells and high calculation accuracy, which are beyond single-CPU computer’s capabilities. With the development of high performance parallel computing technologies, application of parallel computing method on numerical modeling of groundwater flow becomes necessary and important. Using parallel computing can improve the ability to resolve various hydro-geological and environmental problems. In this study, parallel computing method on two main types of modern parallel computer architecture, shared memory parallel systems and distributed shared memory parallel systems, are discussed. OpenMP and MPI (PETSc) are both used to parallelize the most widely used groundwater simulator, MODFLOW. Two parallel solvers, P-PCG and P-MODFLOW, were developed for MODFLOW. The parallelized MODFLOW was used to simulate regional groundwater flow in Beishan, Gansu Province, which is a potential high-level radioactive waste geological disposal area in China. 1. The OpenMP programming paradigm was used to parallelize the PCG (preconditioned conjugate-gradient method) solver, which is one of the main solver for MODFLOW. The parallel PCG solver, P-PCG, is verified using an 8-processor computer. Both the impact of compilers and different model domain sizes were considered in the numerical experiments. The largest test model has 1000 columns, 1000 rows and 1000 layers. Based on the timing results, execution times using the P-PCG solver are typically about 1.40 to 5.31 times faster than those using the serial one. In addition, the simulation results are the exact same as the original PCG solver, because the majority of serial codes were not changed. It is worth noting that this parallelizing approach reduces cost in terms of software maintenance because only a single source PCG solver code needs to be maintained in the MODFLOW source tree. 2. P-MODFLOW, a domain decomposition–based model implemented in a parallel computing environment is developed, which allows efficient simulation of a regional-scale groundwater flow. The basic approach partitions a large model domain into any number of sub-domains. Parallel processors are used to solve the model equations within each sub-domain. The use of domain decomposition method to achieve the MODFLOW program distributed shared memory parallel computing system will process the application of MODFLOW be extended to the fleet of the most popular systems, so that a large-scale simulation could take full advantage of hundreds or even thousands parallel processors. P-MODFLOW has a good parallel performance, with the maximum speedup of 18.32 (14 processors). Super linear speedups have been achieved in the parallel tests, indicating the efficiency and scalability of the code. Parallel program design, load balancing and full use of the PETSc were considered to achieve a highly efficient parallel program. 3. The characterization of regional ground water flow system is very important for high-level radioactive waste geological disposal. The Beishan area, located in northwestern Gansu Province, China, is selected as a potential site for disposal repository. The area includes about 80000 km2 and has complicated hydrogeological conditions, which greatly increase the computational effort of regional ground water flow models. In order to reduce computing time, parallel computing scheme was applied to regional ground water flow modeling. Models with over 10 million cells were used to simulate how the faults and different recharge conditions impact regional ground water flow pattern. The results of this study provide regional ground water flow information for the site characterization of the potential high-level radioactive waste disposal.
Resumo:
With the large developments of the seismic sources theory, computing technologies and survey instruments, we can model and rebuild the rupture process of earthquakes more realistically. On which earthquake sources' properties and tectonic activities law are realized more clearly. The researches in this domain have been done in this paper as follows. Based on the generalized ray method, expressions for displacement on the surface of a half-space due to an arbitrary oriented shear and tensile dislocation are also obtained. Kinematically, fault-normal motion is equivalent to tensile faulting. There is some evidence that such motion occurs in many earthquakes. The expressions for static displacements on the surface of a layered half-space due to static point moment tensor source are given in terms of the generalized reflection and transmission coefficient matrix method. The validity and precision of the new method is illustrated by comparing the consistency of our results with the analytical solution given by Okada's code employing same point source and homogenous half-space model. The computed vertical ground displacement using the moment tensor solution of the Lanchang_Gengma earthquake displays considerable difference with that of a double couple component .The effect of a soft layer at the top of the homogenous half-space on a shallow normal-faulting earthquake is also analyzed. Our results show that more seismic information would be obtained utilizing seismic moment tensor source and layered half-space model. The rupture process of 1999 Chi-Chi, Taiwan, earthquake investigated by using co-seismic surface displacement GPS observations and far field P-wave records. In according to the tectonic analysis and distributions of aftershock, we introduce a three-segment bending fault planes into our model. Both elastic half-space models and layered-earth models to invert the distribution of co-seismic slip along the Chi-Chi earthquake rupture. The results indicate that the shear slip model can not fit horizontal and vertical co-seismic displacements together, unless we add the fault-normal motion (tensile component) in inversions. And then, the Chi Chi earthquake rupture process was obtained by inversion using the seismograms and GPS observations. Fault normal motions determined by inversion, concentrate on the shallow northern bending fault from Fengyuan to Shuangji where the surface earthquake ruptures reveal more complexity and the developed flexural slip folding structures than the other portions of the rupture zone For understanding the perturbation of surface displacements caused by near-surface complex structures, We have taken a numeric test to synthesize and inverse the surface displacements for a pop-up structure that is composed of a main thrust and a back thrust. Our result indicates that the pop-up structure, the typical shallow complex rupture that occurred in the northern bending fault zone form Fengyuan to Shuangji, can be modeled better by a thrust fault added negative tensile component than by a simple thrust fault. We interpret the negative tensile distributions, that concentrate on the shallow northern bending fault from Fengyuan to Shuangji, as a the synthetic effect including the complexities of property and geometry of rupture. The earthquake rupture process also reveal the more spatial and temporal complexities form Fenyuan to SHuangji. According to the three-components teleseismic records, the S-wave velocity structure beneath the 59 teleseismic stations of Taiwan obtained by using the transform function method and the SA techniques. The integrated results, the 3D crustal structure of Taiwan reveal that the thickest part of crustal local in the western Central Range. This conclusion is consistent with the result form the Bouguer gravity anomaly. The orogenic evolution of Taiwan is young period, and the developing foot of Central Range dose not in static balancing. The crustal of Taiwan stays in the course of dynamic equilibrium. The rupture process of 2003)2,24,Jiashi, Xinjiang earthquake was estimated by the finite fault model using far field broadband P wave records of CDSN and IRIS. The results indicate that the earthquake focal is north dip trust fault including some left-lateral strike slip. The focal mechanism of this earthquake is different form that of earthquakes occurred in 1997 and 1998, but similar to that of 1996, Artux, Xinjiang earthquake. We interpreted that the earthquake caused trust fault due to the Tarim basin pushing northward and orogeny of Tianshan mountain. In the end, give a brief of future research subject: Building the Real Time Distribute System for rupture process of Large Earthquakes Based on Internet.
Resumo:
We continue the study of spiking neural P systems by considering these computing devices as binary string generators: the set of spike trains of halting computations of a given system constitutes the language generated by that system. Although the "direct" generative capacity of spiking neural P systems is rather restricted (some very simple languages cannot be generated in this framework), regular languages are inverse-morphic images of languages of finite spiking neural P systems, and recursively enumerable languages are projections of inverse-morphic images of languages generated by spiking neural P systems.