3 resultados para outsourcing (make or buy)

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new measurement method for GaN films and their Schottky contacts is reported in this paper. Instead of the fabrication of Ohmic contacts, this measurement is based on a special back-to-back Schottky diode that has a rectifying character. A mathematical model indicates that the electronic parameters of the materials can be deduced from the device's I-V data. In the experiment of an unintentionally doped n-type GaN layer with a residual carrier density 7 x 10(16) cm(-3), the analysis by the new method gives the layer's sheet resistance rho(s) = 497 Omega, the electron mobility mu(n) =, 613 cm(2) V-1 s(-1) and the ideality factor of the Ni/Au-GaN Schottky contacts n = 2.5, which are close to the data obtained by the traditional measurements: rho(s) = 505 Omega, mu(n) = 585 cm(2) V-1 s(-1) and n = 3.0. The method reported can be adopted not only for GaN films but also for other semiconductor materials, especially in the cases where Ohmic contacts of high quality are hard to make or their fabricating process affects the film's character.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fit of fracture strength data of brittle materials (Si3N4, SiC, and ZnO) to the Weibull and normal distributions is compared in terms of the Akaike information criterion. For Si3N4, the Weibull distribution fits the data better than the normal distribution, but for ZnO the result is just the opposite. In the case of SiC, the difference is not large enough to make a clear distinction between the two distributions. There is not sufficient evidence to show that the Weibull distribution is always preferred to other distributions, and the uncritical use of the Weibull distribution for strength data is questioned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new process of graft copolymerization of poly(vinyl chloride) (PVC) and polyethylene (PE) with other monomers was developed. The grafted chlorinated poly(vinyl chloride) (CPVC) and chlorinated polyethylene (CPE) were synthesized by in situ chlorinating graft copolymerization (ISCGC) and were characterized. Convincing evidence for grafting and the structure of graft copolymers was obtained using FT-IR, H-1-NMR, gel permeation chromatography (GPC), and the vulcanized curves. Their mechanical properties were also measured. The results show that the products have different molecular structure from those prepared by other conventional graft processes. Their graft chains are short, being highly branched and chlorinated. The graft copolymers have no crosslinking structure. The unique molecular structure will make the materials equipped with special properties.