9 resultados para outlier
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Raman spectroscopy on single, living epithelial cells captured in a laser trap is shown to have diagnostic power over colorectal cancer. This new single-cell technology comprises three major components: primary culture processing of human tissue samples to produce single-cell suspensions, Raman detection on singly trapped cells, and diagnoses of the cells by artificial neural network classifications. it is compared with DNA flow cytometry for similarities and differences. Its advantages over tissue Raman spectroscopy are also discussed. In the actual construction of a diagnostic model for colorectal cancer, real patient data were taken to generate a training set of 320 Raman spectra and, a test set of 80. By incorporating outlier corrections to a conventional binary neural classifier, our network accomplished significantly better predictions than logistic regressions, with sensitivity improved from 77.5% to 86.3% and specificity improved from 81.3% to 86.3% for the training set and moderate improvements for the test set. Most important, the network approach enables a sensitivity map analysis to quantitate the relevance of each Raman band to the normal-to-cancer transform at the cell level. Our technique has direct clinic applications for diagnosing cancers and basic science potential in the study of cell dynamics of carcinogenesis. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In addition to classical methods, namely kriging, Inverse Distance Weighting (IDW) and splines, which have been frequently used for interpolating the spatial patterns of soil properties, a relatively more accurate surface modelling technique is being developed in recent years, namely high accuracy surface modelling (HASM). It has been used in the numerical tests, DEM construction and the interpolation of climate and ecosystem changes. In this paper, HASM was applied to interpolate soil pH for assessing its feasibility of soil property interpolation in a red soil region of Jiangxi Province, China. Soil pH was measured on 150 samples of topsoil (0-20 cm) for the interpolation and comparing the performance of HASM, kriging. IDW and splines. The mean errors (MEs) of interpolations indicate little bias of interpolation for soil pH by the four techniques. HASM has less mean absolute error (MAE) and root mean square error (RMSE) than kriging, IDW and splines. HASM is still the most accurate one when we use the mean rank and the standard deviation of the ranks to avoid the outlier effects in assessing the prediction performance of the four methods. Therefore, HASM can be considered as an alternative and accurate method for interpolating soil properties. Further researches of HASM are needed to combine HASM with ancillary variables to improve the interpolation performance and develop a user-friendly algorithm that can be implemented in a GIS package. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Tensor analysis plays an important role in modern image and vision computing problems. Most of the existing tensor analysis approaches are based on the Frobenius norm, which makes them sensitive to outliers. In this paper, we propose L1-norm-based tensor analysis (TPCA-L1), which is robust to outliers. Experimental results upon face and other datasets demonstrate the advantages of the proposed approach.
Resumo:
In this paper, we first present a simple but effective L1-norm-based two-dimensional principal component analysis (2DPCA). Traditional L2-norm-based least squares criterion is sensitive to outliers, while the newly proposed L1-norm 2DPCA is robust. Experimental results demonstrate its advantages.
Resumo:
The Bohai Sea costal area is one of the most developed zones of China and the sewage water from populous and developed cities, including Beijing, Tianjin. Qinhuangdao and Dalian is discharged into the Bohai Sea. Additionally, its semi-enclosed characteristic restricts water exchange, which leads to high accumulation of pollutants in the environment. This overview presents the residues of 6 classes of Persistent Organic Pollutants (POPs). including PAHs, DDTs. HCHs, PCBs and PCDD/Fs. in the sediments and mollusks of the Bohai Sea through analyzing previous literatures. In the sediments. the highest PAH concentrations were detected in the vicinities of Qinhuangdao, while the northeast corner of the Bohai Bay possessed the highest levels of DDTs and PCBs. The investigations on HCHs and PCDD/Fs distributions on the whole sea scale have not been reported. In mollusks, PAH concentrations were in the same order of magnitude in the whole Bohai Sea, so were DDTs. HCHs and PCBs, while the outlier maximum values of PCDDs and PCDFs occurred in Yingkou. In general, the POPs residues in mollusks collected from Shandong Province were higher than the other areas. The compositions of DDTs, HCHs and PCBs in sediments indicated their recent usage. By comparing POP concentrations in sediments with the recommended criterions, it was shown that some individual PAH compounds occasionally associated with adverse biological effects in the vicinities of the Liaodong Bay and Qinhuangdao, and the Liaohe River Estuary were heavily contaminated with DDTs, but PCBs were all below the thresholds. In order to reveal the transference and transformation of POPs in the environment, further studies concerning with their behavior, fate and bioaccumulation in the different trophic levels should be programmed. Moreover, laws and regulations should be enforced to ban the illegal usage of POPs-containing pesticides to guarantee health of the environment and human. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
二维线性鉴别分析(2DLDA)是一种直接基于矩阵的特征提取方法,跳过传统的基于Fisher鉴别准则的线性鉴别分析方法中必须先将二维矩阵转化成一维矢量的过程,有效地提高了特征提取速度且避免了小样本问题,其识别率优于传统的Fisherface方法。结合模糊集理论,提出了一种新的2DLDA算法——模糊2DLDA(FIDLDA)算法。首先采用FKNN算法得到相应的样本分布信息,并按其对最后得到的特征向量所作的贡献融入到特征抽取过程中,得到有效的样本特征向量集。实验表明,F2DLDA算法的性能优于传统的2DLDA算法和Fisherface方法。
Resumo:
一般说来,离群点是远离其他数据点的数据,但很可能包含着极其重要的信息.提出了一种新的离群模糊核聚类算法来发现样本集中的离群点.通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,在经典的FCM模糊聚类算法的基础上得到了一个特征空间内的全新的聚类目标函数,通过对目标函数的优化,最终得到了各个数据的权值,根据权值的大小标识出样本集中的离群点.仿真实验的结果表明了该离群模糊核聚类算法的可行性和有效性.