140 resultados para orbital TIG welding
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Experiments of laser welding cast nickel-based superalloy K418 were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness. The corresponding mechanisms were discussed in detail. Results show that the laser welded seam have non-equilibrium solidified microstructures consisting of Cr-Ni-Fe-C austenite solid solution dendrites as the dominant and some fine and dispersed Ni-3(Al,Ti) gamma' phase as well as little amount of MC needle carbides and particles enriched in Nb, Ti and Mo distributed in the interdendritic regions, cracks originated from the liquation of the low melting points eutectics in the HAZ grain boundary are observed, the average microhardness of the welded seam and HAZ is higher than that of the base metal due to alloy elements' redistribution of the strengthening phase gamma'. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Microstructure characterization is important for controlling the quality of laser welding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft and an unambiguous identification of phases in the weldment was accomplished. It was found that there are gamma-FeCrNiC austenite solid solution dendrites as the matrix, (Nb, Ti) C type MC carbides, fine and dispersed Ni-3 Al gamma' phase as well as Laves particles in the interdendritic region of the seam zone. A brief discussion was given for their existence based on both kinetic and thermodynamic principles. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Exploratory experiments of laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft were conducted. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. The corresponding mechanisms were discussed in detail. Results showed that the laser-welded seam had non-equilibrium solidified microstructures consisting of FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and some fine and dispersed Ni3Al gamma' phase and Laves particles as well as little amount of MC short stick or particle-like carbides distributed in the interdendritic regions. The average microhardness of the welded seam was relatively uniform and lower than that of the base metal due to partial dissolution and suppression of the strengthening phase gamma' to some extent. About 88.5% tensile strength of the base metal was achieved in the welded joint because of a non-full penetration welding and the fracture mechanism was a mixture of ductility and brittleness. The existence of some Laves particles in the welded seam also facilitated the initiation and propagation of the microcracks and microvoids and hence, the detrimental effects of the tensile strength of the welded joint. The present results stimulate further investigation on this field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Experimental trials of autogenous deep penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 5.0 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser output power, welding velocity and defocusing distance on the morphology, welding depth and width as well as quality of the welded seam were investigated. Results show that full keyhole welding is not formed on both K4.18 and 42CrMo side, simultaneously, due to the relatively low output power. Partial fusion is observed on the welded seam near 42CrMo side because of the large disparity of thermal-physical and high-temperature mechanical properties of these two materials. Tile rnicrohardness of the laser-welded joint was also examined and analyzed. It is suggested that applying negative defocusing in the range of Raylei length can increase the welding depth and improve tile coupling efficiency of the laser materials interaction. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Experiments of autogenous laser full penetration welding between dissimilar cast Ni-based superalloy K418 and alloy steel 42CrMo flat plates with 3.5 mm thickness were conducted using a 3 kW continuous wave (CW) Nd:YAG laser. The influences of laser welding velocity, flow rate of side-blow shielding gas, defocusing distance were investigated. Microstructure of the welded seam was characterized by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). Mechanical properties of the welded seam were evaluated by microhardness and tensile strength testing. Results show that high quality full penetration laser-welded joint can be obtained by optimizing the welding velocity, flow rate of shielding gas and defocusing distance. The laser-welded seam have non-equilibrium solidified microstructures consisting of gamma-FeCr0.29Ni0.16C0.06 austenite solid solution dendrites as the dominant and very small amount of super-fine dispersed Ni3Al gamma' phase and Laves particles as well as MC needle-like carbides distributed in the interdendritic regions. Although the microhardness of the laser-welded seam was lower than that of the base metal, the strength of the joint was equal to that of the base metal and the fracture mechanism showed fine ductility. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
对经过 TIG 熔修的海上平台用钢(A537)的板状焊接接头进行了海水腐蚀疲劳试验。试验条件是:加载频率0.2Hz,应力比 R=-1,海水温度20°±1℃,阴极保护电位-850mV±30mV,SCE。就平均寿命来说,TIG 熔修试件的海水腐蚀疲劳寿命为原始焊缝(as-welded)试件寿命的四倍至六倍,并且随应力范围的降低而差别增大.在自由腐蚀条件下,TIG 熔修试件的寿命也比原始焊缝试件的寿命长得多。
Resumo:
对氩弧点焊薄片应变传感器传递性能和疲劳性能进行了试验研究,试验结果表明氩弧点焊薄片应变传感器具有稳定传递性能和可靠的疲劳性能,可以应用于实际工程应变测量.
Resumo:
海洋石油平台在服役期内,由于受到各种环境载荷的交变作用,其受力的焊接构件不可避免地会出现疲劳裂纹。对出现的疲劳裂纹进行补焊修复,可以延长平台的使用期,带来巨大的经济和社会效益。本文通过实验研究,考察了多次补焊对海洋平台用高强度钢焊接接头疲劳性能的影响,以及是否可以通过TIG熔修工艺的采用提高补焊构件的疲劳寿命,达到延长补焊后平台的使用寿命,减少补焊次数的目的。本文涉及的主要研究内容如下:1、考察了多次补焊对焊接接头疲劳寿命的影响。通过对平台用高强度钢焊接接头初焊试样,以及重复三次补焊试样的疲劳实验,得到了各次补焊试样在对数正态分布和威布尔分布下的寿命估算式和考虑了存活率的R-S-N曲线。对实验结果进行了比较和分析,从而考察了多次补焊对焊接接头疲劳性能的影响。2、在每次补焊后,由于焊趾外移造成了焊趾角的变化,使得焊趾处的应力集中系数发生了变化。本文采用有限元方法计算了试样的应力场分布,得到了焊趾处的应力集中系数与焊趾角的关系。考虑到应力集中系数的变化后,对多次补焊试样疲劳实验的实验数据进行了重新处理。3、考察了多次补焊熔修对焊接接头疲劳寿命的影响。本文通过对平台用高强度钢焊接接头补焊及补焊熔修试样的疲劳实验,得到了多次补焊和补焊熔修试样对数正态分布和威布尔分布下的寿命估算式和考虑了存活率的R-S-N曲线。对实验结果进行了比较和分析,从而考察了补焊后采用TIG熔修工艺对焊接接头疲劳性能的影响。4、一次补焊后进行熔修处理可以极大的改善试样的疲劳性能,提高试样的疲劳寿命。但这一结果是在平焊位条件下得出了。为了将这一结果用于实际,还要考察实际操作中大量采用的立焊位条件下熔修的效果。本文完成了立焊位条件下补焊及补焊熔修试样的疲劳实验,得到了相应的S-N曲线。5、疲劳实验数据的处理中,大量采用威布尔分布作为数据统计的分布类型。但由于威布尔分布具有三个参数,给求解带来一定的困难。本文提出一种以在威布尔坐标纸上,数据分布的线形相关系数作为判据的求解威布尔参数的方法,并通过程序加以实现。为了对疲劳实验数据的处理更加方便和直观,编制了“疲劳实验数据处理程序“,将对疲劳实验数据的编辑、分布参数的求解、不同存活率下的疲劳寿命估算和各种分布类型图以及R-S-N曲线的绘制工作包括在该程序中。
Resumo:
We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.
Resumo:
A novel high-average-power pulsed CO2 laser with a unique electrode structure is presented. The operation of a 5-kW transverse-flow CO2 laser with the preionized pulse-train switched technique results in pulsation of the laser power, and the average laser power is about 5 kW. The characteristic of this technique is switching the preionized pulses into pulse trains so as to use the small preionized power (hundreds of watts) to control the large main-discharge power (tens of kilowatts). By this means, the cost and the complexity of the power supply are greatly reduced. The welding of LF2, LF21, LD2, and LY12 aluminum alloy plates has been successfully achieved using this laser. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel high-average-power pulsed CO2 laser with a unique electrode structure is presented. The operation of a 5-kW transverse-flow CO2 laser with the preionized pulse-train switched technique results in pulsation of the laser power, and the average laser power is about 5 kW. The characteristic of this technique is switching the preionized pulses into pulse trains so as to use the small preionized power (hundreds of watts) to control the large main-discharge power (tens of kilowatts). By this means, the cost and the complexity of the power supply are greatly reduced. The welding of LF2, LF21, LD2, and LY12 aluminum alloy plates has been successfully achieved using this laser. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
National Natural Science Foundation of China 60821061 60776061 10604010 60776063
Resumo:
IEECAS SKLLQG