270 resultados para nucleation mode
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A recoverable plate impact testing technology has been developed for studying fracture mechanisms of mode II crack. With this technology, a single duration stress pulse with submicrosecond duration and high loading rates, up to 10(8) MPam(1/2)s(-1), can be produced. Dynamic failure tests of Hard-C 60# steel were carried out under asymmetrical impacting conditions with short stress-pulse loading. Experimental results show that the nucleation and growth of several microcracks ahead of the crack tip, and the interactions between them, induce unsteady crack growth. Failure mode transitions during crack growth, both from mode I crack to mode II and from brittle to ductile fracture, were observed. Based on experimental observations, a discontinuous crack growth model was established. Analysis of the crack growth mechanisms using our model shows that the shear crack extension is unsteady when the extending speed is between the Rayleigh wave speed c(R) and the shear wave speed c(S). However, when the crack advancing speed is beyond c(S), the crack grows at a steady intersonic speed approaching root 2c(S). It also shows that the transient mechanisms, such as nucleation, growth, interaction and coalescence among microcracks, make the main crack speed jump from subsonic to intersonic and the steady growth of all the subcracks causes the main crack to grow at a stable intersonic speed.
Resumo:
Some differences were observed between conventional molecular-beam epitaxy (MBE) and mobility enhanced epitaxy (MEE) of InAs on a vicinal GaAs(001) substrate in the variation of the number density N of the InAs islands, with additional InAs coverage (theta - theta(c)) after the critical InAs coverage theta(c) during the two- to three-dimensional (2D-3D) transition. For MBE the variation was consistent with the power law N(theta) (theta similar to theta(c))(alpha); while for MEE, the linear relation N(theta) proportional to (theta - theta(c)) was observed. The difference is discussed in terms of the randomness in the nucleation of the InAs islands.
Resumo:
Epitaxial growth of InN on GaN(0001) by plasma-assisted molecular-beam epitaxy is investigated over a range of growth parameters including source flux and substrate temperature. Combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM), we establish a relationship between film growth mode and the deposition condition. Both two-dimensional (2D) and three-dimensional (3D) growth modes of the film are observed. For 2D growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski-Krastanov (SK) growth mode of the film. Simultaneous measurements of (reciprocal) lattice constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the first bilayer (BL) deposition and almost completes after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are likely strain free. (C) 2002 American Institute of Physics.
Resumo:
Thick GaN films were grown on sapphire in a home-made vertical HVPE reactor. Effect of nucleation treatments on the properties of GaN films was investigated, including the nitridation of sapphire, low temperature GaN buffer and MOCVD-template. Various material characterization techniques, including AFM, SEM, XRD, CL and PL have been used to assess these GaN epitaxial films. It was found that the surface of sapphire after high temperature nitridation was flat and showed high density nucleation centers. In addition, smooth Ga-polarity surface of epitaxial layer can be obtained on the nitridation sapphire placed in air for several days due to polarity inversion. This may be caused by the atoms re-arrangement because of oxidation. The roughness of N-polarity film was caused by the huge inverted taper domains, which can penetrate up to the surface. The low temperature GaN buffer gown at 650 degrees C is favorable for subsequent epitaxial film, which had narrow FWHM of 307 arcsec. The epitaxial growth on MOCVD-template directly came into quasi-2D growth mode due to enough nucleation centers, and high quality GaN films were acquired with the values of the FWHM of 141 arcsec for (002) reflections. After etching in boiled KOH, that the total etch-pit density was only 5 x 106 cm(-2) illustrated high quality of the thick film on template. The photoluminescence spectrum of GaN film on the MOCVD-template showed the narrowest line-width of the band edge emission in comparison with other two growth modes.
Resumo:
The influence of dielectric surface energy on the initial nucleation and the growth of pentacene films as well as the electrical properties of the pentacene-based field-effect transistors are investigated. We have examined a range of organic and inorganic dielectrics with different surface energies, such as polycarbonate/SiO2, polystyrene/SiO2, and PMMA/SiO2 bi-layered dielectrics and also the bare SiO2 dielectric. Atomic force microscopy measurements of sub-monolayer and thick pentacene films indicated that the growth of pentacene film was in Stranski-Kranstanow growth mode on all the dielectrics. However, the initial nucleation density and the size of the first-layered pentacene islands deposited on different dielectrics are drastically influenced by the dielectric surface energy. With the increasing of the surface energy, the nucleation density increased and thus the average size of pentacene islands for the first mono-layer deposition decreased. The performance of fabricated pentacene-based thin film transistors was found to be highly related to nucleation density and the island size of deposited Pentacene film, and it had no relationship to the final particle size of the thick pentacene film. The field effect mobility of the thin film transistor could be achieved as high as 1.38 cm(2)/Vs with on/off ratio over 3 x 10(7) on the PS/SiO2 where the lowest surface energy existed among all the dielectrics. For comparison, the values of mobility and on/off ratio were 0.42 cm(2)/Vs and 1 x 10(6) for thin film transistor deposited directly on bare SiO2 having the highest surface energy.
Resumo:
Dynamical behaviors and frequency characteristics of an active mode-locked laser with a quarter wave plate (QWP) are numerically studied by using a set pf vectorial laser equation. Like a polarization self-modulated laser, a frequency shift of half the cavity mode spacing exists between the eigen-modes in the two neutral axes of QWP. Within the active medium, the symmetric gain and cavity structure maintain the pulse's circular polarization with left-hand and right-hand in turn for each round trip. Once the left-hand or right-hand circularly polarized pulse passes through QWP, its polarization is linear and the polarized direction is in one of the directions of i45o with respect to the neutral axes of QWP. The output components in the directions of i45" from the mirror close to QWP are all linearly polarized with a period of twice the round-trip time.
Resumo:
The growth of highly lattice-mismatched InAs0.3Sb0.7 films on (100) GaAs Substrates by magnetron Sputtering has been investigated and even epitaxial lnAs(0.3)Sb(0.7) films have been successfully obtained. A strong effect of the growth conditions on the film structure was observed, revealing that there was a growth mechanism transition from three-dimensional nucleation growth to epitaxial layer-by-layer growth mode when increasing the substrate temperature. A qualitative explanation for that transition was proposed and the critical conditions for the epitaxial layer-by-layer growth mode were also discussed.
Resumo:
A new approach is developed to the fabrication of high-quality three-dimensional macro-porous copper films. A highly-ordered macroporous copper film is successfully produced on a polystyrene sphere (PS) template that has been modified by sodium dodecyl sulfate (SDS). It is shown that this procedure can change a hydrophobic surface of PS template into a hydrophilic surface. The present study is devoted to the influence of the electrolyte solution transport on the nucleation process. It is demonstrated that the permeability of the electrolyte solution in the nanochannels of the PS template plays an important role in the chemical electrodeposition of high-quality macroporous copper film. The permeability is drastically enhanced in our experiment through the surface modi. cation of the PS templates. The method could be used to homogeneously produce a large number of nucleations on a substrate, which is a key factor for the fabrication of the high-quality macroporous copper film.
Resumo:
Investigations on the aging hardening behavior of four Al-Li-Zn-Mg-Cu alloys were carried out using differential scanning calorimetry, transmission electron microscopy and hardness measurement. It is shown that the addition of Li inhibits the formation of Zn-rich G.P. zones in Al-Zn-Mg-Cu alloys. The dominant aging hardening precipitates is delta'(Al3Li) phase. Coarse T ((AlZn)(49)Mg-32) phase, instead of MgZn2, precipitates primarily on grain boundaries, and provides little strengthening. The multi-stop aging involving plastic deformation introduces in the matrix a high concentration of structural defects. These defects play different role on the nucleation of Zn-rich G.P. zones in different alloys. For the Li free alloy, structural defects act as vacancy sinks and tend to suppress the homogeneous precipitation of G.P. zones, while for the Li containing alloys, these defects promote the heterogeneous nucleation of G.P. zones and metastable MgZn2. A significant aging hardening effect is attained in deformed Li containing alloys due to the extra precipitation of fine MgZn2 in the matrix combined with deformation hardening.
Resumo:
No abstract.
Resumo:
In this paper, discussions are focused on the growth of a nucleated void in a viscoelastic material. The in situ tensile tests of specimens made of high-density polyethylene, filled with spherical glass beads (HDPE/GB) are carried out under SEM. The experimental result indicates that the microvoid nucleation is induced by the partially interfacial debonding of particles. By means of the Laplace transform and the Eshelby's equivalent inclusion method, a new analytical expression of the void strain at different nucleation times is derived. It can be seen that the strain of the nucleated void depends not only on the remote strain history, but also on the nucleation time. This expression is also illustrated by numerical examples, and is found to be of great usefulness in the study of damage evolution in viscoelastic materials.
Resumo:
In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size dependence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general couple stress theory and three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom mu(i). omega(i) is called micro-rotation and is the sum of material rotation plus the particles' relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press) and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient dominance zone is characterized by the intrinsic material length l(1). Outside the strain gradient dominance zone, the computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack tip is higher than that of the classical field and tends to the square root singularity, which has important consequences for crack growth in materials by decohesion at the atomic scale. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material length l, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient.
Resumo:
Large strain finite element method is employed to investigate the effect of straining mode on void growth. Axisymmetric cell model embedded with spherical void is controlled by constant triaxiality: loading,while plane-stress model containing a circular void is loaded by constant ratio of straining. Elastic-plastic material is used for the matrix in both cases. It is concluded that, besides the known effect of triaxiality, the straining mode which intensifies the plastic concentration around the void is also a void growth stimulator. Experimental results are cited to justify the computation results.
Resumo:
A plane strain mode I crack tip field with strain gradient effects is investigated. A new strain gradient theory is used. An elastic-power law hardening strain gradient material is considered and two hardening laws, i.e. a separation law and an integration Law are used respectively. As for the material with the separation law hardening, the angular distributions of stresses are consistent with the HRR field, which differs from the stress results([19]); the angular distributions of couple stresses are the same as the couple stress results([19]). For the material with the integration law hardening, the stress field and the couple stress field can not exist simultaneously, which is the same as the conclusion([19]), but for the stress dominated field, the angular distributions of stresses are consistent with the HRR field; for the couple stress dominated field, the angular distributions of couple stresses are consistent with those in Ref. [19]. However, the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only, while the crack tip field of mode I is dominated by the tension gradient, which will be shown in another paper.