3 resultados para non-communicable disease
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Features of homologous relationship of proteins can provide us a general picture of protein universe, assist protein design and analysis, and further our comprehension of the evolution of organisms. Here we carried Out a Study of the evolution Of protein molecules by investigating homologous relationships among residue segments. The motive was to identify detailed topological features of homologous relationships for short residue segments in the whole protein universe. Based on the data of a large number of non-redundant Proteins, the universe of non-membrane polypeptide was analyzed by considering both residue mutations and structural conservation. By connecting homologous segments with edges, we obtained a homologous relationship network of the whole universe of short residue segments, which we named the graph of polypeptide relationships (GPR). Since the network is extremely complicated for topological transitions, to obtain an in-depth understanding, only subgraphs composed of vital nodes of the GPR were analyzed. Such analysis of vital subgraphs of the GPR revealed a donut-shaped fingerprint. Utilization of this topological feature revealed the switch sites (where the beginning of exposure Of previously hidden "hot spots" of fibril-forming happens, in consequence a further opportunity for protein aggregation is Provided; 188-202) of the conformational conversion of the normal alpha-helix-rich prion protein PrPC to the beta-sheet-rich PrPSc that is thought to be responsible for a group of fatal neurodegenerative diseases, transmissible spongiform encephalopathies. Efforts in analyzing other proteins related to various conformational diseases are also introduced. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An unknown virus was isolated from massive mortality of cultured threadfin (Eleutheronema tetradactylus) fingerlings. The virus replicated in BF-2 fish cell line and produced a plaque-like cytopathic effect. Electron micrographs revealed non-enveloped, icosahedral particles approximately 70-80 nm in diameter composed of a double capsid layer. Viroplasms and subviral particles approximately 30 run in diameter and complete particles of 70 nm in diameter were also observed in the infected BF-2 tissue culture cells. The virus was resistant upon pH 3 to 11 and ether treatment. It is also stable to heat treatment (3 h at 56 T). Replication was not inhibited by 5-iododeoxyuridine (5-IUdR). Acridine orange stain revealed typical reovirus-like cytoplasmic inclusion bodies. Electrophoresis of purified virus revealed 11 segments of double-stranded RNA and five major structural polypeptides of approximately 136, 132, 71, 41 and 33 kDa. Based on these findings, the virus isolated was identified to belong to the genus Aquareovirus and was designated as threadfin reovirus. This virus differed from a majority of other aquareovirus by its increase in virus infectivity upon exposure to various treatments such as high and low pH, heat (56 degreesC), ether and 5-IUdR. The RNA and virion protein banding pattern of the threadfin reovirus was shown to differ from another Asian isolate, the grass carp hemorrhage reovirus (GCV). Artificial injection of the threadfin reovirus into threadfin fingerlings resulted in complete mortality, whereas sea bass (Lates calcarifer) fingerlings infected via bath route showed severe mortality within a week after exposure. These results indicate that the threadfin virus is another pathogenic Asian aquareovirus isolate that could cross-infect into another marine fish, the sea bass. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
以生物工程技术表达及120 g/L SDS-PAGE电泳纯化Nonapeptide突变体,取制备的Non-apeptide突变体进行抗新城疫病毒(NDV)的鸡胚试验、鸡体内抗NDV试验。结果表明,当Nonapeptide突变体基因产物浓度达4μg/mL~6μg/mL,对鸡胚保护率均达到100%,感染鸡胚全部存活;Nonapeptide突变体基因产物浓度大于4μg/mL,对NDV有很好的抑制作用,鸡用药后3 d体内检测不到NDV,低剂量组(2μg/mL)也有较好的抑制NDV作用,鸡用药后5 d体内检测不到NDV。Nonapeptide突变体基因产物具有NDV多克隆抗体相似活性,能够抑制鸡胚中和组织培养中NDV的繁殖,具有中和、抑制NDV吸附作用。