2 resultados para neurodegeneration

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major protein component of the amyloid deposition in Alzheimer's disease is a 39-43 residue peptide, amyloid beta (A beta). A beta is toxic to neurons, although the mechanism of neurodegeneration is uncertain. Evidence exists for non-B DNA conformation in the hippocampus of Alzheimer's disease brains, and A beta was reportedly able to transform DNA conformation in vitro. In this study, we found that DNA conformation was altered in the presence of A beta, and A beta induced DNA condensation in a time-dependent manner. Furthermore, A beta sheets, serving as condensation nuclei, were crucial for DNA condensation, and Cu2+ and Zn2+ ions inhibited A beta sheet-induced DNA condensation. Our results suggest DNA condensation as a mechanism of A beta toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parkinson's disease is a neurodegenerative disorder of uncertain pathogenesis characterized by a loss of dopaminergic neurons in substantia nigra pars compacta, and can be modeled by the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Oxidative stress may contribute to MPTP- and Parkinson's disease-related neurodegeneration. Fucoidan is a sulfated polysaccharide extracted from brown seaweeds which possesses a wide variety of biological activities including potent antioxidative effects. Here we investigated the effect of fucoidan treatment on locomoter activities of animals, striatal dopamine and its metabolites and survival of nigral dopaminergic neurons in MPTP-induced animal model of Parkinsonism in C57/BL mice in vivo and on the neuronal damage induced by 1-methyl-4-phenylpyridinium (MPP+) in vitro, and to study the possible mechanisms. When administered prior to MPTP, fucoidan reduced behavioral deficits, increased striatal dopamine and its metabolites levels, reduced cell death, and led to a marked increase in tyrosine hydroxylase expression relative to mice treated with MPTP alone. Furthermore, we found that fucoidan inhibited MPTP-induced lipid peroxidation and reduction of antioxidant enzyme activity. In addition, pre-treatment with fucoidan significantly protected against MPP+-induced damage in MN9D cells. Taken together, these findings suggest that fucoidan has protective effect in MPTP-induced neurotoxicity in this model of Parkinson's disease via its antioxidative activity. (C) 2009 Elsevier B.V. All rights reserved.