228 resultados para nanocrystalline alloys

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fivefold deformation twins were reported recently to be observed in the experiment of the nanocrystalline face-centered-cubic metals and alloys. However, they were not predicted previously based on the molecular dynamics (MD) simulations and the reason was thought to be a uniaxial tension considered in the simulations. In the present investigation, through introducing pretwins in grain regions, using the MD simulations, the authors predict out the fivefold deformation twins in the grain regions of the nanocrystal grain cell, which undergoes a uniaxial tension. It is shown in their simulation results that series of Shockley partial dislocations emitted from grain boundaries provide sequential twining mechanism, which results in fivefold deformation twins. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline intermetallic Co3Fe7 was produced on the surface of cobalt via surface mechanical attrition (SMA). Deformationinduced diffusion entailed the formation of a series of solid solutions. Phase transitions occurred depending on the atomic fraction of Fe in the surface solid solutions: from hexagonal close-packed (<4% Fe) to face-centered cubic (fcc) (4-11% Fe), and from fcc to body-centered cubic (>11% Fe). Nanoscale compositional probing suggested significantly higher Fe contents at grain boundaries and triple junctions than grain interiors. Short-circuit diffusion along grain boundaries and triple junctions dominate in the nanocrystalline intermetallic compound. Stacking faults contribute significantly to diffusion. Diffusion enhancement due to high-rate deformation in SMA was analyzed by regarding dislocations as solute-pumping channels, and the creation of excess vacancies. Non-equilibrium, atomic level alloying can then be ascribed to deformation-induced intermixing of constituent species. The formation mechanism of nanocrystalline intermetallic grains on the SMA surface can be thought of as a consequence of numerous nucleation events and limited growth. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous experiments on nanocrystalline Ni were conducted under quasistatic strain rates (similar to 3x10(-3)/s), which are much lower than that used in typical molecular dynamics simulations (>3x10(7)/s), thus making direct comparison of modeling and experiments very difficult. In this study, the split Hopkinson bar tests revealed that nanocrystalline Ni prefers twinning to extended partials, especially under higher strain rates (10(3)/s). These observations contradict some reported molecular dynamics simulation results, where only extended partials, but no twins, were observed. The accuracy of the generalized planar fault energies is only partially responsible, but cannot fully account for such a difference. (C) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of fatigue crack nucleation for nanocrystalline (nc) nickel was experimentally investigated in this paper. The samples of electrodeposited ne nickel were loaded cyclically by using a three point bending instrument at first. Then, atomic force microscopy (AFM) was used to scanning the sample surface after fatigue testing. The results indicated that, after fatigue testing, there are vortex-like cells with an average size of 108nm appeared along the crack on nc nickel sample. And, the roughness of sample surface increased with the maximum stress at the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cyclic deformation behavior Of ultrafine-grained (UFG) Ni samples synthesized by the electrodeposition method was studied. Different from those made by severely plastic deformation, the UFG samples used in this study are characterized by large-angle grain boundaries. Behaviors from nanocrystalline Ni and coarse-grained Ni samples were compared with that Of Ultrafine-grained Ni. With in situ neutron diffraction. unusual evolutions of residual lattice strains as well as cyclic hardening and softening behavior were demonstrated during the cyclic deformation. The microstructural changes investigated by TEM are discussed with respect to the unusual lattice strain and cyclic hardening/softening. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low strain hardening has hitherto been considered an intrinsic behavior for most nanocrystalline (NC) metals, due to their perceived inability to accumulate dislocations. In this Letter, we show strong strain hardening in NC nickel with a grain size of 20 nm under large plastic strains. Contrary to common belief, we have observed significant dislocation accumulation in the grain interior. This is enabled primarily by Lomer-Cottrell locks, which pin the lock-forming dislocations and obstruct islocation. motion. These observations may help with developing strong and ductile NC metals and alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanostructured FeAl intermetallics were prepared directly by mechanical alloying (MA) in a high-energy planetary ball-mill. The phase transformations and structural changes occurring in the studied material during mechanical alloying were investigated by X-ray diffraction (XRD). Transmission electron microscopy (TEM) was employed to examine the morphology of the powders. Thermal behavior of the milled powders was examined by differential scanning calorimetry (DSC). Disordered Fe(Al) solid solution was formed at the early stage. After 30 h of milling, Fe(Al) solid solution transformed into an ordered FeAl phase. The average crystallite size reduction down to about 12 nm was accompanied by the introduction of the average lattice strain up to 1.7%. The TEM picture showed that the size of milled powders was less than 30 nm. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of nanocrystalline W-type hexaferrites Ba(CoxZn1-x)(2)Fe16O27 powders by sol-gel auto-combustion method has been investigated. The thermal decomposition process of dried gel was studied by thermogravimetry (TG), differential thermal analysis (DTA) and infrared spectra (IR). The structural and magnetic properties of resultant particles were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), and vibrating sample magnetometer (VSM). The results reveal that the dried gel exhibits auto-combustion behavior. After combustion, pure nanocrystalline W-type hexaferrite phase starts to appear at the calcination temperature of 800 degrees C. The crystallinity and the grain size increase at higher temperature. The saturation magnetization and coercivity clearly depend on calcination temperature and Co content X.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha-titanium and its alloys with a dual-phase structure (alpha+beta) were deformed dynamically under strain rate of about 10(4) s(-1). The formation and microstructural evolution of the localized shear bands were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that both the strain and strain rate should be considered simultaneously as the mechanical conditions for shear band formation, and twinning is an important mode of deformation. Both experimental and calculation show that the materials within the bands underwent a superhigh strain rate (9 x 10(5) s(-1)) deformation, which is two magnitudes of that of average strain rate required for shear band formation; the dislocations in the bands can be constricted and developed into cell structures; the phase transformation from alpha to alpha(2) within the bands was observed, and the transformation products (alpha(2)) had a certain crystallographic orientation relationship with their parent; the equiaxed grains with an average size of 10 mu m in diameter observed within the bands are proposed to be the results of recrystallization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation twins and stacking faults have been observed in nanocrystal line Ni, for the first time under uniaxial tensile test conditions. These partial dislocation mediated deformation mechanisms are enhanced at cryogenic test temperatures. Our observations highlight the effects of deformation conditions, temperature in particular, on deformation mechanisms in nanograins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The partial-dislocation-mediated processes have so far eluded high-resolution transmission electron microscopy studies in nanocrystalline nc Ni with nonequilibrium grain boundaries. It is revealed that the nc Ni deformed largely by twinning instead of extended partials. The underlying mechanisms including dissociated dislocations, high residual stresses, and stress concentrations near stacking faults are demonstrated and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(Zr65Al10Ni10Cu15)(100-x) Nb-x glass forming alloys with Nb contents ranging from 0 to 15 at.% were prepared by water-cooled copper mould cast. The alloys with different Nb contents exhibited different microstructures and mechanical properties. Unlike the monolithic Zr65Al10Ni10Cu15 bulk metallic glass, only a few primary bee beta-Ti phase dendrites were found to distribute in the glassy matrix of the alloys with x = 5. For alloys with x = 10, more beta-phase dendrites forms, together with quasicrystalline particles densely distributed in the matrix of the alloys. For alloys with x = 15, the microstructure of the alloy is dominated by a high density of fully developed P-phase dendrites and the volume fraction of quasicrystalline particles significantly decreases. Room temperature compression tests showed that the alloys with x = 5 failed at 1793 MPa and exhibited an obvious plastic strain of 3.05%, while the other samples all failed in a brittle manner. The ultimate fracture strengths are 1793, 1975 and 1572 MPa for the alloys with x = 0, 10 and 15 at.% Nb, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minor yttrium addition can improve the glass-forming ability of Cu-Zr-Al ternary alloys via suppression of the growth of eutectic clusters. Yttrium addition also makes the room temperature ductility of the alloys decrease, and both the compressive strength and elastic strain limits increase slightly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defects induced by plastic deformation in electrodeposited, fully dense nanocrystalline (nc) Ni with an average grain size of 25 nm have been characterized by means of high resolution transmission electron microscopy. The nc Ni was deformed under uniaxial tension at liquid-nitrogen temperature. Trapped full dislocations were observed in the grain interior and near the grain boundaries. In particular, these dislocations preferred to exist in the form of dipoles. Deformation twinning was confirmed in nc grains and the most proficient mechanism is the heterogeneous nucleation via emission of partial dislocations from the grain boundaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline materials are characterized by a typical grain size from 1 to 100nm. In order to study the nanocrystalline properties of nanocrystalline materials, we chose nanocrystalline coppers as the research object. The uniaxial tensile deformation of computer produced nanocrystalline coppers is simulated by using molecular dynamics with Finnis-Sinclair potential. The mean grain size of simulated nanocrystalline coppers is varied within the 5.38 to 1.79 nm range. The strength, Young's modulus and stress-strain are strongly depended on the grain size and nanocrystalline structure. The simulated nanocrystalline coppers show a reverse Hall-Petch effect.