26 resultados para n-dimensional MacLaurine series
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.
Resumo:
The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is developed in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.
Resumo:
A general method is presented for solving the plane elasticity problem of finite plates with multiple microcracks. The method directly accounts for the interactions between different microcracks and the effect of outer boundary of a finite plate. Analysis is based on a superposition scheme and series expansions of the complex potentials. By using the traction-free conditions on each crack surface and resultant forces relations along outer boundary, a set of governing equations is formulated. The governing equations are solved numerically on the basis of a boundary collocation procedure. The effective Young's moduli for randomly oriented cracks and parallel cracks are evaluated for rectangular plates with microcracks. The numerical results are compared with those from various micromechanics models and experimental data. These results show that the present method provides a direct and efficient approach to deal with finite solids containing multiple microcracks.
Resumo:
An analytical solution to the three-dimensional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expansion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the normalized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.
Resumo:
The three-dimensional transition of the wake flow behind a circular cylinder is studied in detail by direct numerical simulations using 3D incompressible N-S equations for Reynolds number ranging from 200 to 300. New features and vortex dynamics of the 3D transition of the wake are found and investigated. At Re = 200, the flow pattern is characterized by mode A instability. However, the spanwise characteristic length of the cylinder determines the transition features. Particularly for the specific spanwise characteristic length linear stable mode may dominate the wake in place of mode A and determine the spanwise phase difference of the primary vortices shedding. At Re = 250 and 300 it is found that the streamwise vortices evolve into a new type of mode - "dual vortex pair mode" downstream. The streamwise vortex structures switch among mode A, mode B and dual vortex pair mode from near wake to downstream wake. At Re = 250, an independent low frequency f(m) in addition to the vortex shedding frequency f(s) is identified. Frequency coupling between f(m) and f(s) occurs. These result in the irregularity of the temporal signals and become a key feature in the transition of the wake. Based on the formation analysis of the streamwise vorticity in the vicinity of cylinder, it is suggested that mode A is caused by the emergence of the spanwise velocity due to three dimensionality of the incoming flow past the cylinder. Energy distribution on various wave numbers and the frequency variation in the wake are also described.
Resumo:
The coherent structure in two-dimensional mixing layers is simulated numerically with the compressible Navier-Stokes equations. The Navier-Stokes equations are discretized with high-order accurate upwind compact schemes. The process of development of flow structure is presented: loss of stability, development of Kelvin-Helmholtz instability, rolling up and pairing. The time and space development of the plane mixing layer and influence of the compressibility are investigated.
Resumo:
We study phonon properties of one-dimensional nanocrystalline solids that are associated with a model nanostructured sequence. A real-space renormalization-group approach, connected with a series of renormalization-group transformations, is developed to calculate numerically the local phonon Green's function at an arbitrary site, and then the phonon density of states of these kinds of nanocrystalline chains. Some interesting phonon properties of nanocrystalline chains are obtained that are in qualitative agreement with the experimental results for the optical-absorption spectra of nanostructured solids.
Resumo:
The dynamic stress intensity factor history for a semi-infinite crack in an otherwise unbounded elastic body is analyzed. The crack is subjected to a pair of suddenly-applied point loadings on its faces at a distance L away from the crack tip. The exact expression for the mode I stress intensity factor as a function of time is obtained. The method of solution is based on the direct application of integral transforms, the Wiener-Hopf technique and the Cagniard-de Hoop method. Due to the existence of the characteristic length in loading this problem was long believed a knotty problem. Some features of the solutions are discussed and graphical result for numerical computation is presented.
Resumo:
On the basis of previous works, the strange attractor in real physical systems is discussed. Louwerier attractor is used as an example to illustrate the geometric structure and dynamical properties of strange attractor. Then the strange attractor of a kind of two-dimensional map is analysed. Based on some conditions, it is proved that the closure of the unstable manifolds of hyberbolic fixed point of map is a strange attractor in real physical systems.
Resumo:
It is proved that the simplified Navier-Stokes (SNS) equations presented by Gao Zhi[1], Davis and Golowachof-Kuzbmin-Popof (GKP)[3] are respectively regular and singular near a separation point for a two-dimensional laminar flow over a flat plate. The order of the algebraic singularity of Davis and GKP equation[2,3] near the separation point is indicated. A comparison among the classical boundary layer (CBL) equations, Davis and GKP equations, Gao Zhi equations and the complete Navier-Stokes (NS) equations near the separation point is given.
Resumo:
This paper deals with fracture analyses in 3-dimensional bodies containing a surface crack. A general solution of stress-strain fields at crack tip is proposed. Based on the stress-strain fields obtained, a high-order 3-dimensional special element is established to calculate the stress intensity factors in a plate with a surface crack. The variation of stress intensity factors with geometric parameters is investigated.
Resumo:
The short-surface waves generated by a 3-D arbitrarily oscillating body floating onwater are discussed. In the far-field off the body, the phase and the amplitude functions ofthe radiated waves are determined by the ray method. An undetermined constant is includ-ed in the amplitude function. From the result of Ref. [1], the near-field boundary layersolution near the body waterline is obtained. The amplitude of this solution depends on thewhole wall shape of the body and the slope at the body waterline on the cross-sections per-pendicular to the waterline. By matching the far-field solution with the near-field bound-ary layer solution, the undetermined constant in the amplitude function of the far-fieldradiated waves is determined. For the special case of a half-submerged sphere which per-forms vertical oscillating motion, the result obtained in this paper is in agreement withthat of Ref. [ 2 ].
Resumo:
The initial-value problem of a forced Burgers equation is numerically solved by the Fourier expansion method. It is found that its solutions finally reach a steady state of 'laminar flow' which has no randomness and is stable to disturbances. Hence, strictly speaking, the so-called Burgers turbulence is not a turbulence. A new one-dimensional model is proposed to simulate the Navier-Stokes turbulence. A series of numerical experiments on this one-dimensional turbulence is made and is successful in obtaining Kolmogorov's (1941) k exp(-5/3) inertial-range spectrum. The (one-dimensional) Kolmogorov constant ranges from 0.5 to 0.65.
Two-dimensional short surface-waves of an oscillating cylinder with arbitrary shape of cross-section
Resumo:
The 2-D short surface waves produced by a partially submerged cylinder which performsarbitrary oscillating motion are discussed. The uniformly valid solution which is applicableto all kinds of cylinder wall cases at waterline point is obtained. It is pointed out that thesolution obtained by Holford[J] for the vertical oscillating motion of a cylinder is incomplete.The reason why his solution cannot go over to that for the case of vertical cylinder wall atwaterline point is also pointed out.
Resumo:
For high-speed-flow lasers, the one-dimensional and first-order approximate treatment in[1] under approximation of geometrical optics is improved still within the scope of approx-imation of geometrical optics. The strict accurate results are obtained, and what is more,two- and three-dimensional treatments are done. Thus for two- and three-dimensional cases, thestable oscillation condition, the formulae of power output and analytical expression of modesunder approximation of geometrical optics (in terms of gain function) are derived. Accord-ing to the present theory, one-and two-dimensional calculations for the typical case of Gerry'sexperiment are presented. All the results coincide well with the experiment and are better thanthe results obtained in [1].In addition, the applicable scope of Lee's stable oscillation condition given by [1] is ex-panded; the condition for the approximation of gcometrical optics to be applied to mode con-structure in optical cavity is obtained for the first time and the difference between thiscondition and that for free space is also pointed out in the present work.